

Decentralized Liquid Waste Management

Feb 18th - 21st, 2019 Department of Civil Engineering College of Engineering Pune

Winter School

on

Decentralized Liquid Waste Management

Presentation Slides

TITLE WINTER SCHOOL MODULE ON DECENTRALIZED LIQUID WASTE MANAGEMENT

RESEARCH PROJECT

SANITATION CAPACITY BUILDING PLATFORM,

ANCHORED BY

NATIONAL INSTITUTE OF URBAN AFFAIRS, DELHI

CONTENT

The module is prepared by College of Engineering, Pune and Ecosan Services Foundation (ESF), Pune

GRAPHIC DESIGN

Dhawal Patil, Ecosan Services Foundation

DISCLAIMER

While every effort has been made to ensure the correctness of data/information used in this training module, neither the author nor NIUA accept any legal liability for the accuracy or inferences drawn from the material contained therein or for any consequences arising from the use of this material. No part of this module may be reproduced in any form (electronic or mechanical) without prior permission from or initiation to NIUA.

CONTACT

National Institute of Urban Affairs 1st and 2nd Floor, Core 4B, India Habitat Centre, Lodhi Road, New Delhi 110003, India Website: <u>www.niua.org</u>, <u>www.scbp.niua.org</u>

Decentralized Liquid Waste Management

Decentralized Liquid Waste Management

AGENDA

DAY 1: 18th February 2019				
TIME	SESSION	RESOURCE PERSON		
10.00 - 10.45 hours	Introduction-Introduction of NIUA, SCBP, CoEP, ESF and participants Aims and objectives of the winter school Setting the ground rules	Prof. Raval, CoEP & Mr. Dhawal Patil, ESF		
10.45 - 11.45 hours	Water and Sanitation in Developing CountriesEnvironmental health, Water supply andenvironmental sanitation, Resource andwaste systems, Objectives of water supplyand sanitation systemsEnvironmental HealthGlobal burden of diseases, Transmissionroutes of pathogens and related diseases	Prof. Raval, CoEP		
11.45 - 12.00 hours	COFFEE BREAK			
12.00 - 12.45 hours	Urban Challenges Deficiencies and challenges in urban water and sanitation; Challenges faced at household and communities; Challenges at city and town level; Challenges at the international level	Prof. Raval, CoEP		
12.45 - 13.45 hours	LUNCH BREAK			
13.45 - 14.45 hours	Non Technical Aspects Enabling environment; Technical and physical criteria; Socio-cultural aspects, Political and institutional aspects; Financial and economic aspects. Decentralized Liquid Waste Management Systems. Shift in paradigm, Limitation of centralised systems; Potential of the decentralized sanitation approach; Constraints in implementing decentralized approach.	Mr. Dhawal Patil, ESF		
14.45 - 15.45 hours	Sanitation Systems Definition and objectives; Sanitation coverage challenges; Waste products, Main parameters to describes wastewater; Characteristics of waste and their value	Mr. Saurabh Kale, ESF		
15.45 - 16.00 hours	COFFEE BREAK			
16.00 - 17.00 hours	GUEST LECTURE 1			

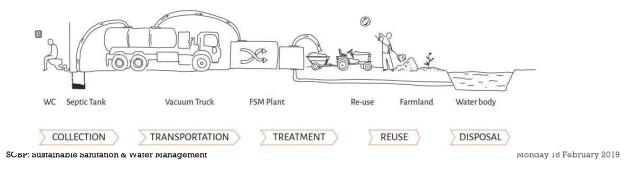
DAY 2: 19th February 2019			
TIME	SESSION	RESOURCE PERSON	
10.00 - 10.45 hours	Recap and discussions		
10.45 - 11.45 hours	Group Work: Mapping my locality, defining boundaries; Presentation by groups	Mr. Saurabh Kale, ESF	
11.45 - 12.00 hours	COFFEE BREAK		
12.00 - 12.45 hours	Sanitation Systems and Technologies Classifications of sanitation systems, Functional groups and technological options	Mr. Dhawal Patil, ESF	
12.45 - 13.45 hours	LUNCH		
13.45 - 14.45 hours	Group Work: Understanding sanitation systems, identifying problems/gaps, Conceptualising sanitation system	Mr. Dhawal Patil, ESF	
14.45 - 15.45 hours	5 - 15.45 hours Dimensioning Parameters Dimensioning Parameters Hydraulic load, Organic load, Sludge volume		
15.45 - 16.00 hours	COFFEE BREAK		
16.00 - 17.00 hours	GUEST LECTURE 2: Malaprabha - Biogas plant linked toilets	Prof. Sameer Shastri	

DAY 3: 20th February 2019				
TIME	SESSION	RESOURCE PERSON		
9.30 - 10.45 hours	Site Visit to CoEP Hostel Campus Sustainable wastewater management with reuse of reclaimed water.	Ms. Radhika Boargaonkar and Mr. Nirmal Thakare, ESF		
10.45 - 11.45 hours	Process of Wastewater Treatment Basics of biological treatment; Aerobic and Anaerobic Treatment; Phase separation; Separation of Solids; Elimination of Nitrogen; Elimination of Phosphorus; Removal of Pathogens	Prof. Sadgir, CoEP		
11.45 - 12.00 hours	COFFEE BREAK			
12.00 - 12.45 hours	Design of Treatment Components Grease trap & Grit chamber; Septic tank	Prof. Sadgir, CoEP		
12.45 - 13.45 hours	LUNCH			
13.45 - 14.45 hours	Visit to plumbing lab of Indian Plumbing Association To understand the various fixtures and flow of the water in the sanitation systems.	Prof. Mohite, CoEP		
14.45 - 15.45 hours	Design of Treatment Components Anaerobic Baffled Reactor	Ms. Radhika Boargaonkar ESF		
15.45 - 16.00 hours	COFFEE BREAK			
16.00 - 17.00 hours	Design of Treatment Components Constructed Wetlands	Ms. Radhika Boargaonkar ESF		

DAY 4: 21st February 2019				
TIME	SESSION	RESOURCE PERSON		
10.00 - 10.45 hours	Economics of DLWM Economy of wastewater treatment; Treatment alternatives; Parameters for economic calculation	Prof. Sadgir, CoEP		
10.45 - 11.45 hours	Group Work Planning of decentralized liquid waste management systems	Mr. Dhawal Patil and Mr. Saurabh Kale, ESF		
11.45 - 12.00 hours	COFFEE BREAK			
12.00 - 12.45 hours	Treatment of Faecal sludge and Septage Objectives of treatment, Stages of treatment, Processes of treatment, Components of treatment, Disposal of endproducts	Mr. Dhawal Patil, ESF		
12.45 - 13.45 hours	LUNCH			
13.45 - 14.45 hours	Group Work Presentation of the group works	CoEP & ESF		
14.45 - 15.45 hours	······			
15.45 - 16.00 hours	COFFEE BREAK			
16.00 - 17.00 hours	Closing ceremony	CoEP & ESF		

SANITATION CAPACITY BUILDING PLATFORM

Water and Sanitation in Developing countries



Prof. Pratap Raval, College of Engineering, Pune

CONTENT

- Overview
- Environmental health,
- Water supply and environmental sanitation,
- Resource and waste systems,
- Objectives of water supply and sanitation systems

SANITATION DEFINITIONS

The United Nations-World Health Organization Joint Monitoring Programme (2008, 2010) for Water Supply and Sanitation defines 'improved' sanitation as: <u>the means that hygienically</u> <u>separate human excreta from human contact and</u> <u>hence reduces health risks to humans.</u>

A lack of adequate sanitation and systems for managing excreta remains a massive threat to the health of populations and the environment in low and middle income countries.

SCBP: Sustainable Sanitation & Water Management

Wednesday, 20 February 2019

WATER AND SANITATION IN OUR WORLD TODAY

WATER QUALITY

1 in 3 people don't have access to toilets or latrines

With no other choice, **l billion** people defecate outside.

2 million tones of human waste enter water sources every day.

1.8 billion people use faecally contaminated water, polluted water and poor sanitation practices spread diseases such as diarrhoea, cholera and malaria.

WASTEWATER IMPACT IN DEVELOPED WORLD

- A family of four can use 220,000 litres of water a year. This requires 120 kWh of energy to provide it and 100 kWh to treat it as sewerage. The energy used release 200 kg of CO₂ into the atmosphere each year
- Despite the efforts devoted to water treatment at sewage plants in the Netherlands, upwards of <u>50,000 tonnes of pollutants</u> enter surface aquatic ecosystems annually from municipal water system, including almost <u>500</u> <u>tonnes of heavy metal</u>. The system also produces <u>3.2 million tonnes of unusable solid sewage sludge.</u>
- The World Water Vision statement say that trend of freshwater withdrawal and consumption will continue to increase over next twenty-five years. Related to 1995 figures, water withdrawal and consumption in municipalities will respectively by 43% and 100% greater in 2025.

SCBP: Sustainable Sanitation & Water Management

Wednesday, 20 February 2019

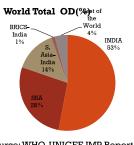
UN STATISTICS ON THE WATER CRISIS

- "WATER SCARCITY AFFECTS MORE THAN 40 PERCENT O F THE GLOBAL POPULATION AND IS PROJECTED TO RISE."
- "MORE THAN 80 PERCENT OF WASTEWATER RESULTING FROM HUMAN ACTIVITIES IS DISCHARGED INTO RIVERS OR SEA WITHOUT ANY TREATMENT, LEADING TO POLLUTION."
- "MORE THAN 2 MILLION PEOPLE DIE EVERY YEAR FROM DIARRHOEAL DISEASES. POOR HYGIENE AND UNSAFE WATER ARE RESPONSIBLE FOR NEARLY 90 PERCENT OF THESE DEATHS AND MOSTLY AFFECT CHILDREN."; "MORE THAN 800 CHILDREN DIE EVERY DAY FROM DIARRHOEAL DISEASES LINKED TO POOR HYGIENE"

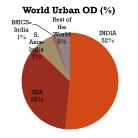
HTTP://WWW.UN.ORG/SUSTAINABLEDEVELOPMENT/WP-CONTENT/UPLOADS/2016/06/WHY-IT-MATTERS_SANITATION_1P.PDF

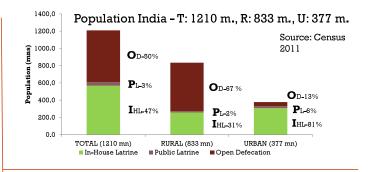
UN STATISTICS ON THE WATER CRISIS

- "EXTENDING BASIC WATER AND SANITATION SERVICES TO THE UNSERVED WOULD COST US\$28.4 BILLION PER YEAR FROM 2015 TO 2030, OR 0.10 PER CENT OF THE GLOBAL PRODUCT OF THE 140 COUNTRIES INCLUDED IN ITS STUDY"
- THE ECONOMIC IMPACT OF NOT INVESTING IN WATER AND SANITATION COSTS AN ENORMOUS 4.3 PER CENT OF SUB-SAHARAN AFRICAN GDP. THE WORLD BANK ESTIMATES THAT 6.4 PER CENT OF INDIA'S GDP IS LOST DUE TO ADVERSE ECONOMIC IMPACTS AND COSTS OF INADEQUATE SANITATION


HTTP://WWW.UN.ORG/SUSTAINABLEDEVELOPMENT/WP-CONTENT/UPLOADS/2016/06/WHY-IT-MATTERS_SANITATION_1P.PDF

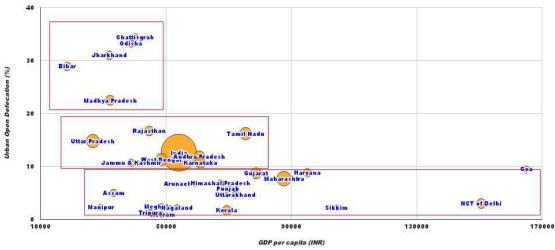
SCBP: Sustainable Sanitation & Water Management


Wednesday, 20 February 2019


7

SCALE OF CHALLENGES : INDIA AND THE WORLD

Source: WHO-UNICEF JMP Report 2014



MDG Goal/ Target/ Indicator	India's Baseline - 1990	India's Target for 2015	India's achieveme nt in 2012
Safe drinking water (T)	70	85	93
Improved Sanitation (T)	18	59	36
Improved Sanitation (U)	50	75	60
Improved Sanitation (R)	7	71	25 Source: MOP
			2013

STATE DIFFERENCES: URBAN SANITATION

Source: Census of India (2011), Planning Commission (2012)

Urban Open defecation in India, as against per capita State GDP shows three clear clusters

1. Smaller, higher income states, have lower OD; 2. Large sized states have OD similar to India's average : 3. Medium sized lower urbanized states have higher OD

SCBP: Sustainable Sanitation & Water Management

Source: S. Dasgupta, Center for Policy Research, New Delhi

Wednesday, 20 February 2019

9

10

Millennium Development Goals MDGs

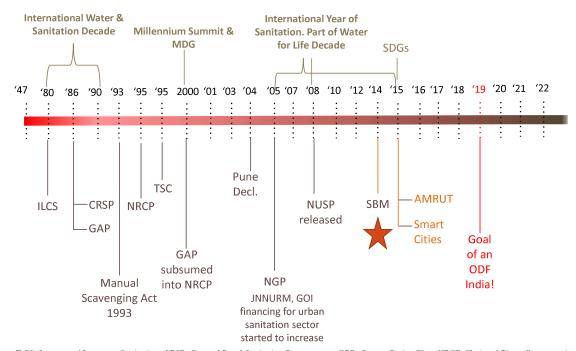
- UN-led
- 8 goals and 21 targets, focusing on poverty reduction
- Relevant to low income countries
- 2 water and sanitation targets under MDG 7
- 3 core indicators on water and sanitation
- Monitoring through household surveys



Sustainable Development Goals SDGs

- Country-led
- 17 goals and 169 targets, focusing on the three pillars of sustainable development
- Relevant to all countries
- 8 water and sanitation targets under SDG 6
- 11 core indicators on water and sanitation
- Monitoring by national authorities, feeding into regional and global reporting

SDG 6



GOAL 6: ENSURE ACCESS TO WATER AND SANITATION FOR ALL

HTTP://WWW.UN.ORG/SUSTAINABLEDEVELOPMENT/WATER-AND-SANITATION/

- BY 2030, ACHIEVE UNIVERSAL AND EQUITABLE ACCESS TO SAFE AND AFFORDABLE DRINKING WATER FOR ALL
- BY 2030, ACHIEVE ACCESS TO ADEQUATE AND EQUITABLE SANITATION AND HYGIENE FOR ALL AND END OPEN DEFECATION, PAYING SPECIAL ATTENTION TO THE NEEDS OF WOMEN AND GIRLS AND THOSE IN VULNERABLE SITUATIONS
- BY 2030, IMPROVE WATER QUALITY BY REDUCING POLLUTION, ELIMINATING DUMPING AND MINIMIZING RELEASE OF HAZARDOUS CHEMICALS AND MATERIALS, HALVING THE PROPORTION OF UNTREATED WASTEWATER AND SUBSTANTIALLY INCREASING RECYCLING AND SAFE REUSE GLOBALLY
- BY 2030, SUBSTANTIALLY INCREASE WATER-USE EFFICIENCY ACROSS ALL SECTORS AND ENSURE SUSTAINABLE WITHDRAWALS AND SUPPLY OF FRESHWATER TO ADDRESS WATER SCARCITY AND SUBSTANTIALLY REDUCE THE NUMBER OF PEOPLE SUFFERING FROM WATER SCARCITY

6 GLEAN WATER AND SANITATION

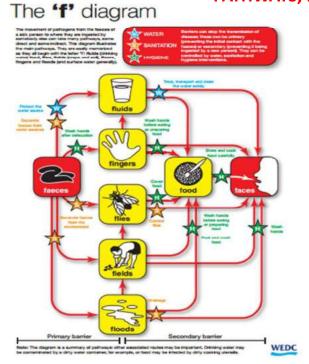
NATIONAL: INCREASED ATTENTION TO SANITATION POLICY

ILCS- Integrated Low-cost Sanitation, CRSP- Central Rural Sanitation Programme, GAP- Ganga Action Plan, NRCP- National River Conservation Programme, TSC- Total Sanitation Campaign, NGP- Nirmal Gram Puraskar, JNNURM- Jawaharlal Nehru National Urban Renewal Mission, NUSP- National Urban Sanitation Policy , SBM – Swachh Bharat Mission, NUDM – National Urban Development Mission

ENVIRONENTAL HEALTH

Global Burdon of Diseases

Faecal-oral (focus of this presentation)


Diarrhoeal disease

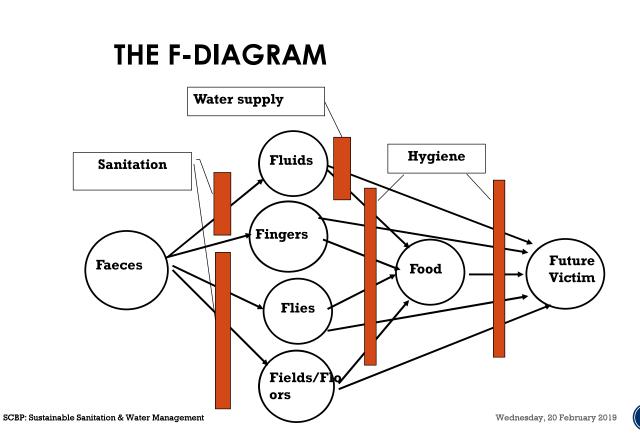
- 2 million deaths/year from diarrhoea, mostly under 5
 Jumbo jet crash every hour and a half...
- One billion cases/year
- 4.3% of Burden of Disease DALYs
- 88% (?) attributable to inadequate WSH
- 1/3 of developing world pop'n carry intestinal worms
- 200 million infected by schistosomiasis (bilharzia)

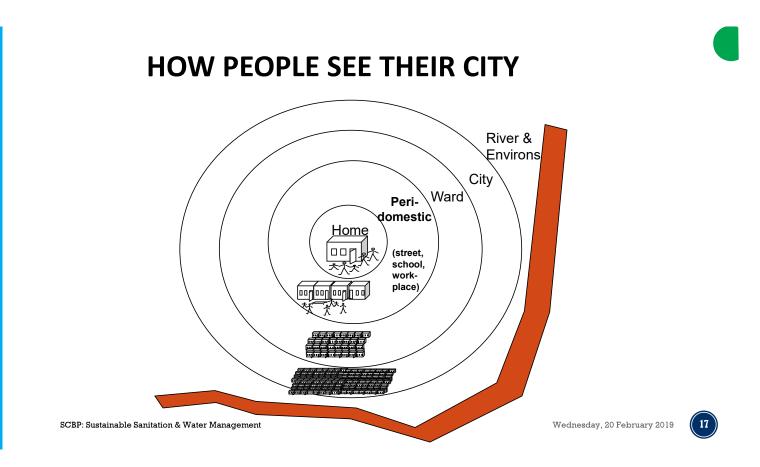
6-9 million blind from trachoma (1/4 reduced by adequate water supply)

TRANSMISSION ROUTE OF PATHOGENS FAECAL - ORAL

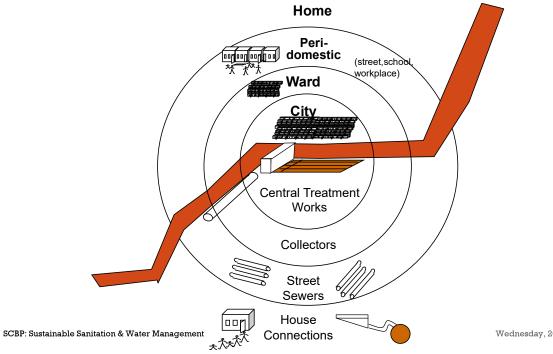
PATHWAYS, RISKS, IMPACT

Water borne diseases

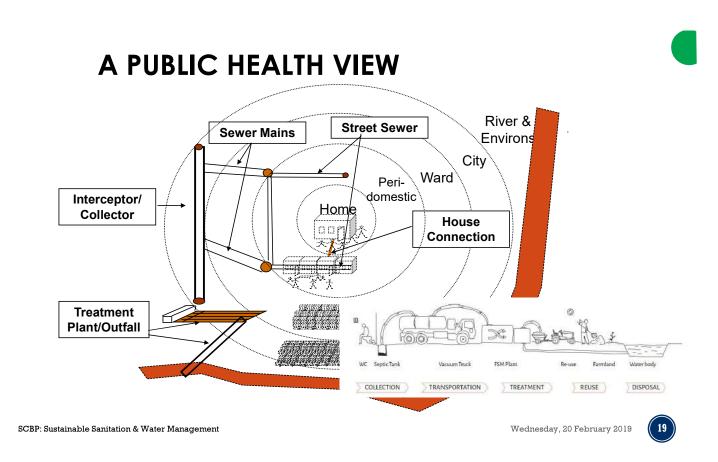

- Diarrhoea: estimated 600 mill. adult cases, 300 mill. U-5
 - : about 400,000 U-5 deaths
- Vector borne
 - Malaria: 900,000 (2013) reported cases to 24 mill. annual cases (estimated 2012)
 - Dengue : ~ 50,000 cases & 250 deaths (2012)


Stunting

 undernutrition in India is largely explained by open defecation, population density, and lack of sanitation and hygiene


Wednesday, 20 February 2019

15



AN ENVIRONMENTAL VIEW

Wednesday, 20 February 2019

FSM WAY FORWARD

- Specific urban contexts
- The way forward for urban sanitation
- Academic institute-Interface between research, implementation & dissemination

ruary 2019

20 February 2019

SANITATION CAPACITY BUILDING PLATFORM

Urban Challenges

Prof. Pratap Raval, College of Engineering, Pune

ecosan

SERVICES FOUNDATION

CONTENT

- Overview
- Challenges in Urban water and sanitation in India,
- Challenges faced at household and communities,
- Challenges at City and Town Level,

OVERVIEW- URBAN WATER & SANITATION

1400.0

1200.0 1000.0

"More Indians have mobile phones than toilets". This sensational news first made headlines in 2010.

As per <u>Census 2011</u> Access to drinking water supply (Households)

- 71.2% within their premises
- 20.7 % within 100m from their premises
- 8% has to move beyond 100m from their premises

OD-50% 800.0 Sanitation situation in India 600.0 **P**L-3% **O**D-67 % **O**D-13% 400.0 **P**1-6% **I**HL-47% **P**L-2% 200.0 **I**HL-31% **I**HL-81% 0.0 TOTAL (1210 mn) URBAN (377 mn) RURAL (833 mn) Open Defecation In-House Latrine ■Public Latrine

SCBP: Sustainable Sanitation & Water Management

Census 2011 reported 13 % households does open defecation

Wednesday, 20 February 2019

URBAN WATER

The deficits in sanitation become more critical in the context of the absence of reliable, safe water in Indian cities.

Urban households in India depend on multiple sources often separate sources for potable and non-potable uses

The most worrisome consequence of this dependence on non-public, non-networked sources, often multiple and distant, is the contamination of water, especially for potable uses

URBAN WATER

Access to drinking water-Only a little more than 60 per cent of urban households have access to public supplies of drinking water. Even households connected to the public supply system receive on average only three hours of drinking water supply a day, and an average of <u>75 litres per capita</u>

Even water from public systems can be contaminated.

SCBP: Sustainable Sanitation & Water Management

URBAN WATER

Differentials across urban centres-Cities in India are divided into classes according to their population, and allocation of public funding across these classes is often a matter of debate. Conveyance and treatment deficits- Urban India faces a tremendous shortfall in facilities for safe waste collection, conveyance and treatment – for both on-site systems and networked systems

Household-level deficits in sanitation-13 per cent (10 million) households resort to open defecation, and another <u>3 per cent</u> or <u>1.8 million households</u> have "unimproved" sanitation (unimproved pit latrines, removal of night soil by humans, animals or direct flow into drainage).

(Census 2011) SCBP: Sustainable Sanitation & Water Management Wednesday, 20 February 2019

URBAN SANITATION & ENVIRONMENT

Ground and surface water pollution

SCBP: Sustainable Sanitation & Water Management

Wednesday, 20 February 2019

FETCH WATER FROM A HUGE WELL IN THE VILLAGE OF NATWARGHAD IN THE WESTERN INDIAN STATE OF GUJARAT

SCBP: Sustainable Sanitation & Water Management

A BANGLADESHI WOMAN COLLECTS CONTAMINATED WATER TO RINSE PRODUCE AT A VEGETABLE MARKET

SCBP: Sustainable Sanitation & Water Management

PUMPING WATER IN ALLAHABAD, INDIA AFTER A **HEAVY RAIN**

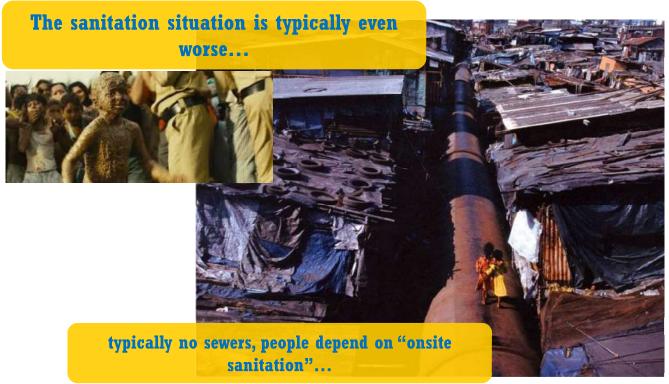
SCBP: Sustainable Sanitation & Water Management

Wednesday, 20 February 2019

WATCHING FOR TRAINS WHILE COLLECTING DRINKING WATER IN MUMBAI

Wednesday, 20 February 2019

11


INTERVIEWS WITH WOMEN IN PUNE, INDIA

" WE FACE ACUTE SHORTAGES OF WATER. WE HAVE PUBLIC STANDPOSTS... BUT WATER IS AVAILABLE FOR ONLY 2-3 HOURS EACH DAY. LONG QUEUE... FREQUENT FIGHTS. (MAY) NEED TO WALK 20-30 MINUTES TO FETCH WATER ... IT IS SO HUMILIATING! "

SCBP: Sustainable Sanitation & Water Management

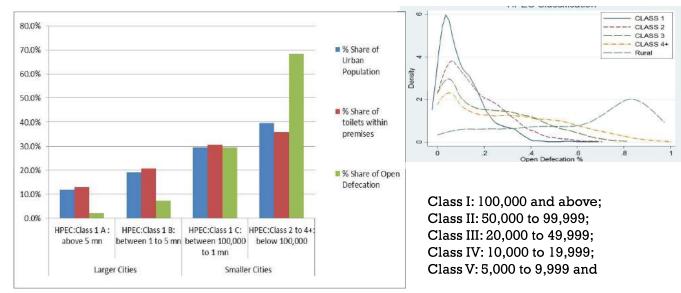
Wednesday, 20 February 2019

SCBP: Sustainable Sanitation & Water Management

Wednesday, 20 February 2019

13

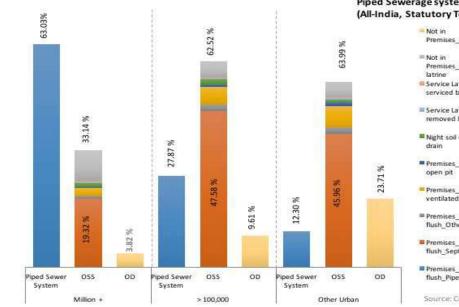
Source: Census of India (2011), Planning Commission (2012)


- Urban Open defecation in India, as against per capita State GDP shows three clear clusters
- 1. Smaller, higher income states, have lower OD;
- 2. Large sized states have OD similar to India's average :
- 3. Medium sized lower urbanized states have higher OD

CHALLENGES FOR URBAN WATER AND

SANITATION

Sanitation Situation across city size: 2011

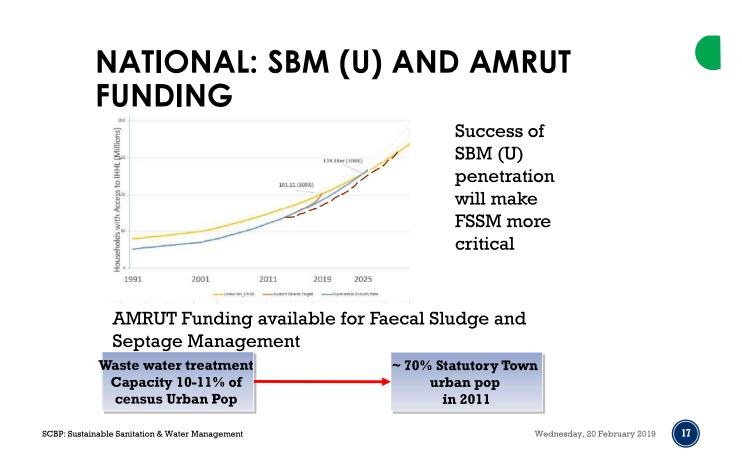

High Powered Expert Committee (HPEC) on Urban Infrastructure

SCBP: Sustainable Sanitation & Water Management

Wednesday, 20 February 2019

15

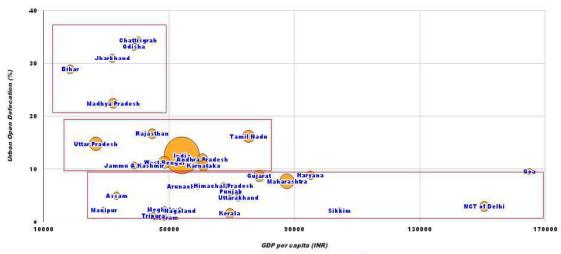
WITH THE DECREASE IN CITY SIZE, DEPENDENCE **ON OSS ALSO INCREASES**



Piped Sewerage systems vs. OSS (All-India, Statutory Towns)

Source: Census 2011 Wednesday, 20 February 2019

SCBP: Sustainable Sanitation & Water Management


Safely managed	MDG/SDG	Service ladder	Progressive realization	
Basic	SDG 6.2	Safely managed sanitation	Private improved facility where faecal wastes are safely disposed on site or transported and treated off-site; plus a handwashing facility with soap and water	
Shared	A	Basic sanitation	Improved facility which separates excreta from human contact (private)	
Unimproved	continuity	Shared sanitation	Improved facility which separates excreta from human contact (shared with other hh)	
0		Unimproved sanitation	excreta from human contact (shared with other hh) Unimproved facility does not separate excreta from human contact	
Open Given Contract of the second sec	No service	Open defecation		

SCBP: Sustainable Sanitation & Water Management

Wednesday, 20 February 2019

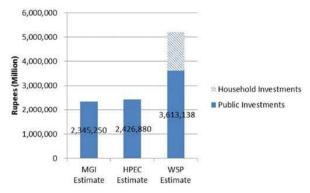
¹⁸

STATE DIFFERENCES: URBAN SANITATION

Source: Census of India (2011), Planning Commission (2012)

Urban Open defecation in India, as against per capita State GDP shows three clear clusters

1. Smaller, higher income states, have lower OD; 2. Large sized states have OD similar to India's average : 3. Medium sized lower urbanized states have higher OD


SCBP: Sustainable Sanitation & Water Management

Source: S. Dasgupta, Center for Policy Research, New Delhi

Wednesday, 20 February 2019

19

Financing requirements for urban sanitation

The first estimate, based on 2008 prices (US\$ 1 = Indian rupees (INR) 44), was prepared by McKinsey Global Institute (MGI).

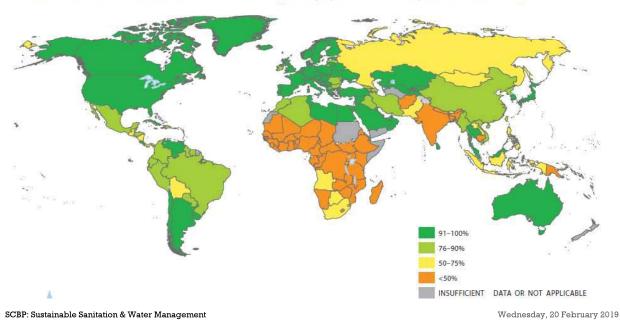
The second estimate was made by the <u>High</u> <u>Powered Expert Committee (HPEC)</u> on Urban Infrastructure, set up by the previous government to estimate investment requirements for the provision of urban infrastructure services over the next two decades, based on 2009 prices.

The third estimate, prepared by WSP, South Asia, differs from others in two central aspects: it takes household investments into account, and it assumes a mix of different sanitation systems rather than sewerage only.

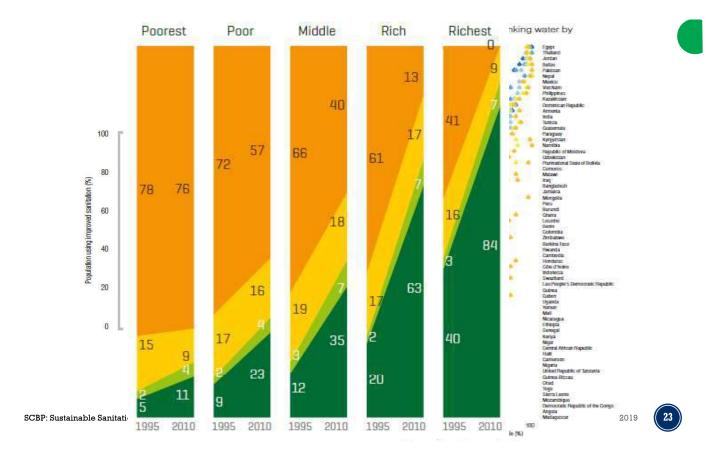
EXPLORE GLOBAL SANITATION PROGRESS

100-

Use this interactive tool from the World Health Organisation to analyse progress on water and sanitation for different countries between 1990-2015.


Interactive Progress on Sanitation and Drinking Water 2015 Dashboard

SCBP: Sustainable Sanitation & Water Management


Wednesday, 20 February 2019

21

In 47 countries, areas or territories, less than half the population uses improved sanitation in 2015

ed sanitation facilities (%) 80-Average 60dmi gnisu 40-Population 100 20-2015 0 Change over time for: Bangladesh Urban Total 100 Select a country by click-ing on it on the map, or using the drop-down 80menu More on definitions in the tab behind. 60 age

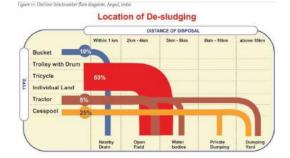
NATIONAL: CHANGES IN SOCIAL STRUCTURE, HOUSING CONSOLIDATION

• Housing consolidation and improvements in HH access to piped water supply

As share of total housing (NSS)	1983	1993	2002	2008-09	2011 (census)
Permanent	57.6%	73.8%	87.7%	91.7%	84.3%
Semi-permanent (roof quality)	25.9%	17.9%	9.0&	6.2%	11.6%

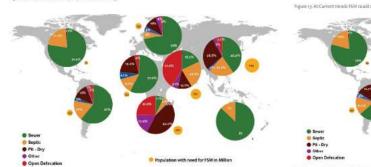
Changes in social structure including

- Family composition nuclear families
- Social Equity and dignity demands
 - gender equity and voice within HH, increased workforce participation
 - Manual scavenging Act, caste based mobilization,


Wednesday, 20 February 2019

ORGANISED FSM CENTRAL TO IMPROVED SANITATION

Current scenario no more


Image Source: UMC 2014

INTERNATIONAL: FSM IS GROWING AND IS HERE TO STAY

- High *dependency* on OSS currently
- Future *increase in dependency* from 2.7 billion upto 4.9 billion persons by 2030!
- High Vulnerabilities occupational and human health and the environment
- Advantages over sewerage systems costs, time requirements of construction, nature of cities, climate benefits, private service onnortunitur ota

SCBP: Sustainab San Raffar Sy Smith Hill and Naparenko 2081 4

P 12 Clo

Wednesday, 20 February 2019

CHALLENGES OR WHY IS SANITATION STILL AN ISSUE IN THE 21ST CENTURY?

Roads, airports, flyovers, Mars missions everything works but sanitation?

Source: http://breakoutwear.co.uk/blog/?p=3449

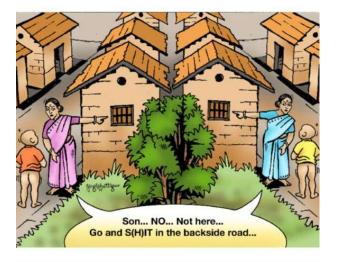
SCBP: Sustainable Sanitation & Water Management

Source: http://www.apagemedia.com/gallery/category/92

Wednesday, 20 February 2019

27

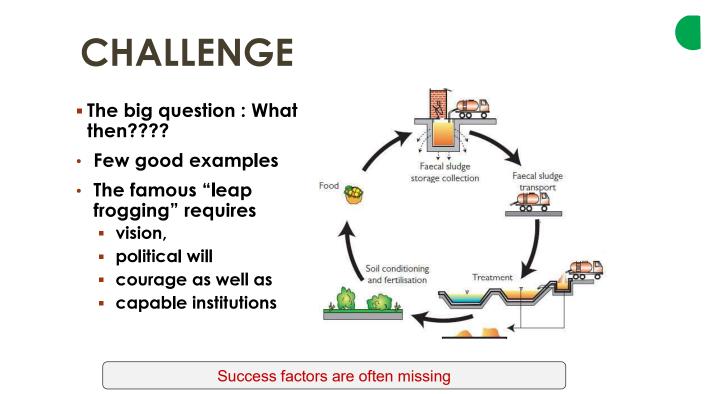
CHALLENGE


- Speed
- Cities are not able to cope with the pace of urbanization with regard to
 - Reforms
 - Institutions
 - Skill development
 - Asset creation and maintenance

SCBP: Sustainable Sanitation & Water Management

CHALLENGE

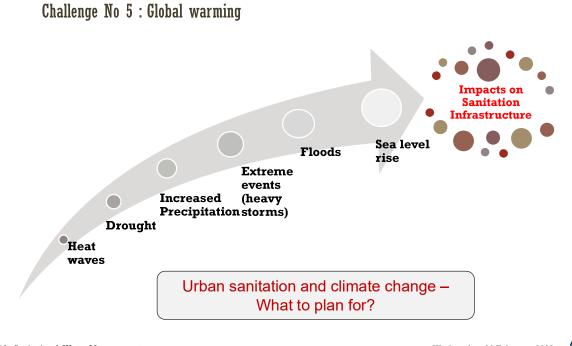
- Sanitation requires not only sound technical solutions but highly depends on
 - good governance
 - social and local political contexts
 - wide ranging awareness in all stakeholders
 - inclusiveness

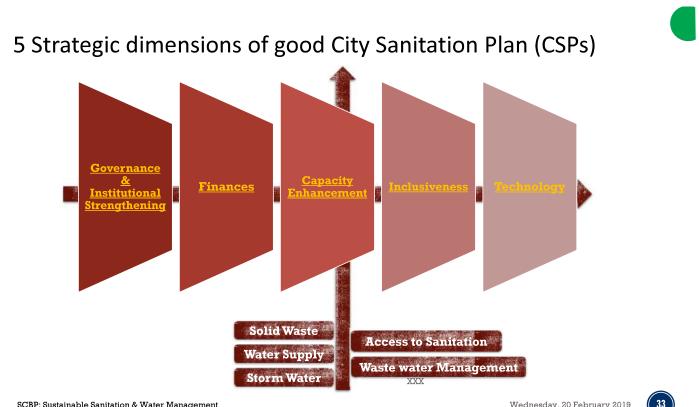

Wednesday, 20 February 2019

SCBP: Sustainable Sanitation & Water Management

CHALLENGE

- Solutions of the west can not be replicated due to
- Lack of money
- Lack of water
- Lack of energy
- Lack of reuse orientation





SCBP: Sustainable Sanitation & Water Management

Wednesday, 20 February 2019

31

SCBP: Sustainable Sanitation & Water Management

Wednesday, 20 February 2019

SANITATION CAPACITY BUILDING PLATFORM

Non-Technical Aspects

Mr. Dhawal Patil M.Sc. Hydro Science and Engineering General Manager - Operations

ECOSAN SERVICES FOUNDATION

CONTENTS

- Stakeholders
- Enabling environment
- Institutional and political aspects
- Economic aspects
- Financial aspects

STAKEHOLDERS

Key stakeholders

- The community
- The municipality
- The utility
- Sector NGOs
- CBOs

Secondary stakeholders

- Private sector
- Sector specialists/experts
- Universities
- Donors
- Funding institutions

ENABLING ENVIRONMENT

An 'enabling environment' can be seen as the set of interrelated conditions that impact on the potential to bring about sustained and effective change.

INSTITUTIONAL AND POLITICAL ASPECTS

Regulations and standards, Organisation setup, Political aspects, Bureaucracy

REGULATIONS AND STANDARDS

- Developed countries use permit system.
- Quantity volume of water allowed to be discharged in a day.
- Quality characteristic of treated effluent allowed to be discharged.
 - Frequency of monitoring is fixed.
 - Standards depend on where the discharge is taking place.

REGULATIONS AND STANDARDS

- Developing countries permit system does not exist or is not enforced.
- Households and community based sanitation systems are beyond the scope of regulations.
- Growing number of on-site sanitation systems, regulations and standards will be enforced strictly.

ORGANISATIONAL SETUP

Sanitation systems need functional organisational setup of sanitation stakeholders with clearly defined responsibilities.

ORGANISATIONAL SETUP

- Overburdened
- Underfunded
- Sheer volume of work makes the institution look inefficient and obsolete.

Private sector

- Profit focussed
 - Efficient
- Can support in running the infrastructure and manage it.

- Community focussed
- Human resource

Can support to create awareness.

POLITICAL ASPECTS

A supportive political environment is essential for the successful implementation of a sanitation program.

- Step 1: Defining over arching vision and political will
- Step 2: Articulating broad objectives and taking on challenges
- Step 3: Environmental sanitation, advocacy, mass awareness
- Step 4: Percolation of knowledge

POLITICAL ASPECTS

- Governments tend to sacrifice environmental concerns for other fiscal priorities.
- Political and administrative preferences lean heavily towards large-scale, centralised wastewater and sewerage systems.

BUREAUCRACY

- Responsibilities of different authorities are not clearly defined.
- Three tier: central, regional and local authorities.
- Lack of coordination and communication mechanism.
- Sanitation programs get hindered in terms of execution.

KEY TAKE AWAY POINTS

- Familiarity with the local regulatory framework.
- Political will and support for creating an enabling environment.
- Unclear responsibilities and bureaucratic processes can significantly delay sanitation program.
- In a sanitation program, the roles of the different stakeholders have to be clearly defined.

LOCAL SKILLS AND COMMUNITY PARTICIPATION

- Important criteria to select appropriate intervention.
- Community participation is not merely the provision of self-help labour.
- Community participation is important not only in planning and implementing stages, but also during monitoring and evaluation.

AVAILABILITY OF LOCAL MATERIALS AND TOOLS

- Aim to reduce implementation time and costs.
- Expertise is needed to modify standard designs or develop new design.
- While using local resources, there should not be adverse effect on local environment and economy.

AFFORDABLE TECHNOLOGY

- On site or local sanitation systems seems to be less expensive to build and operate.
- Not all on plot facilities are equally affordable to all.
- Pour flush toilets linked to septic tank > Pour flush toilet linked to twin soak pit > Pit latrines
- Designing a suitable and affordable sanitation and environmentally safe system is the key to achieving the targets.

APPROPRIATE SERVICE LEVEL AND WILLINGNESS TO PAY

- The level of service appropriate to the need of the communities.
- Higher satisfaction leads to more willingness to pay.

Should we design storm water drainage system for six month monsoon season or recurring 10 year storm period?

OPERATION AND MAINTENANCE

- OpEx is as important as CapEx while choosing/designing of sanitation system.
- Life cycle cost analysis of sanitation systems.
- Community toilet blocks or IHHL?
- Most crucial part while deciding the technologies for wastewater treatment.

Cost benefit analysis, Subsidies and loans

COST-BENEFIT ANALYSIS

- Ideally should be undertaken for all possible sanitation systems.
- Virtually impossible as improved health and user convenience cannot be quantified.
- Evaluation w.r.t. economic costs and financial costs.
- Economic costs necessary for decision makers.
- Financial costs are dependent on policy variables.

SUBSIDIES OR LOAN?

- Is direct subsidy going to make sanitation affordable?
- Discounts on some key components of sanitation system?
- Should not reduce sense of ownership and responsibilities.

- Will beneficiaries avail loan facility?
- Setting the interest rate and loan repayment term is crucial.
- Control is needed to ensure proper utilisation of loan.

KEY TAKE AWAY POINTS

- Financial costs are only relevant for individual stakeholders (e.g. households).
- Accounting for economic costs allows user to compare alternative system or technology options.
- Subsidies and loans may help the poor pay the investment costs of sanitation infrastructure but at the expense of ownership and maintenance.

SANITATION CAPACITY BUILDING PROGRAM

Decentralised Liquid Waste Management System

Mr. Dhawal Patil M.Sc. Hydro Science and Engineering General Manager - Operations

Shift in paradigm, Limitations of centralised systems, Features and Constraints of Decentralised Systems

SHIFT IN PARADIGM

- Water borne sanitation system densely populated areas of industrialised countries.
- In developing countries urgent need for affordable and sustainable infrastructure.
- There is a need in shift of approach.

LIMITATIONS OF CENTRALISED SYSTEMS

- Increases risk in event of system failure.
- Poor reachability in peri urban areas and informal settlements.
- Complex and require professional and skilled operators.
- O&M to be financed by the local government.
- Reduces wastewater reuse opportunities.

LIMITATIONS OF CENTRALISED SYSTEMS

Engineering solution based on centralised systems built and maintained by subsidised public agencies are inappropriate to the extraordinary pace and character of the urbanisation process in the developing world.

FEATURES OF DECENTRALISED SYSTEMS

- Reduces risks associated with system failure.
- Allows segregation of waste streams and local reuse.
- Increases responsiveness to local demands needs.
- Permits tailormade solutions.
- Minimises the freshwater requirements.
- Allows incremental development and investment.

CONSTRAINTS OF DECENTRALISED SYSTEMS

- Capacity to plan, design, implement and operate.
- Appropriate policy framework.
- Coordination between government, private sector and civil society.
- Compatibility with knowledge, skills locally available.
- Number of small investments = BIG investment!

KEY TAKE AWAY POINTS

- In developing countries, decentralised sanitation systems and technologies are often more affordable and sustainable.
- Decentralised solutions are usually more responsive to local needs and conditions.

Decentralised and centralised systems should complement and not exclude each other.

Thank you...

+91 20640 00736 | +91 20245 30061

ecosan@ecosanservices.org

www.ecosanservices.org

SANITATION CAPACITY BUILDING PLATFORM

Sanitation Systems

Mr. Saurabh Kale Sr. Project Manager Ecosan Services Foundation

SERVICES

OUNDATION

CONTENTS

- Waste products
- Parameters for characterising wastewater
- Understand your system
- Ecological sanitation
- Resource management
- Planning of sanitation system
- Closing the loop

Black water, Grey water, Excreta, Faecal sludge, Domestic wastewater and Stormwater

BLACK WATER

SCBP: Sustainable Sanitation & Water Management

Mixture of

- Urine,
- •Faeces,
- Flushing water and
- anal cleansing water or
- dry cleansing material (toilet paper)

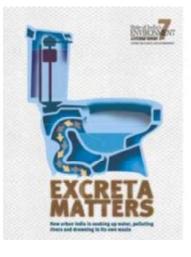
SCBP: Sustainable Sanitation & Water Management

GREY WATER

Is generated through,

- Bathing,
- Handwashing,
- Washing utensils and
- Laundry

SCBP: Sustainable Sanitation & Water Management

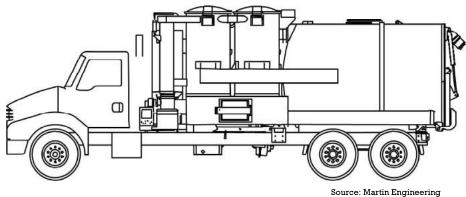

Wednesday, 20 February 2019


EXCRETA

Mixture of

- Urine,
- Faeces and
- Small amount of anal cleansing water

No flushing water!



Source: India Water Portal

FAECAL SLUDGE


Undigested or partially digested slurry or solid resulting from storage of blackwater or excreta.

SCBP: Sustainable Sanitation & Water Management

DOMESTIC WASTEWATER

It includes all kind of liquid waste generated at household level (blackwater and greywater). However it usually does not include storm water.

SCBP: Sustainable Sanitation & Water Management

Wednesday, 20 February 2019

STORMWATER

- Runoff from house roofs, paved areas and roads during rainfall event.
- Water from catchment of a stream or river upstream of a community settlement.

Source: Protect Every Drop

SCBP: Sustainable Sanitation & Water Management

Wednesday, 20 February 2019

Solids, Organic constituents, Nutrients, Pathogens and other parameters

SCBP: Sustainable Sanitation & Water Management

SOLIDS

- TS: Total Solids & TSS: Total Suspended Solids
- Suspended solids- bigger than 0.2µm
- Settleable and colloidal solids
- 70% organic solids; 30% inorganic solids

Turbidity and organic solids deplete the oxygen in the water body and prevent light from penetrating.

SCBP: Sustainable Sanitation & Water Management

Wednesday, 20 February 2019

11

ORGANIC CONSTITUENTS

- BOD: Biochemical Oxygen Demand
 - **COD: Chemical Oxygen Demand**
- Biodegradable organics: proteins, carbohydrates and fats.
- BOD signifies approximate amount of oxygen required to stabilise the organic matter.

Used to size treatment plants, measure efficiency of the processes, evaluate compliance with the discharge standards.

NUTRIENTS

- TN: Total Nitrogen; TP: Total Phosphorus
- Also known as bio stimulants.
- Essential for growth of micro organisms, plants and animals.
- In aquatic environment growth of undesired aquatic life.
- On land leads to groundwater pollution

SCBP: Sustainable Sanitation & Water Management

PATHOGENS

- TC (MPN): Total Coliform; FC (MPN): Faecal Coliform
- Communicable diseases can be transmitted.
- Specific monitoring organisms is tested
 - to gauge the plant operation and
 - suitability for reuse.

Wednesday, 20 February 2019

13

OTHER PARAMETERS

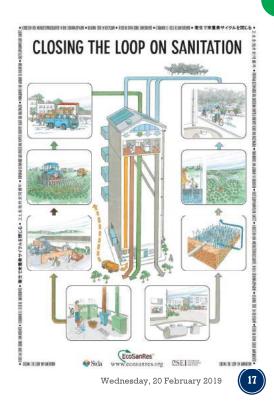
- Heavy metals
- Acidity/Basicity (pH)
- Alkalinity (Ca & Mg Bicarbonates)
- Electrical Conductivity (EC)
- Temperature

SCBP: Sustainable Sanitation & Water Management

Wednesday, 20 February 2019

15

Hygienically safe, economical and closed loop system


SCBP: Sustainable Sanitation & Water Management

ECOLOGICAL SANITATION

- Resource recovery and reuse.
- Minimizing the consumption of non renewable resource.

Hygienically safe, economical and closed loop system!

SCBP: Sustainable Sanitation & Water Management

CHARACTERISTIC COMPARISON

	Total	Grey water	Urine	Faeces
Volume (L/cap.yr)	25,000- 100,000	25,000- 100,000	500	50
Nitrogen (kg/cap.yr)	2.0-4.0	5%	85%	10%
Phosphorus (kg/cap.yr)	0.3-0.8	10%	60%	30%
Potassium(kg/cap.yr)	1.4-2.0	34%	54%	12%
COD (kg/cap.yr)	30	41%	12%	47%
Faecal coliform (per 100 mL)	-	10 ⁴ -10 ⁶	0	10 ⁷ -10 ⁹

SCBP: Sustainable Sanitation & Water Management

POTENTIAL RISKS AND BENEFITS

	Greywater	Urine	Faeces
Chemical contaminants	Fats, oils and toxic substances (org. compounds, chlorides, metals)	Micro contaminants (e.g. hormones & antibiotics)	Micro contaminants (e.g. heavy metals)
Biological contaminants	Pathogens (bacteria, viruses, helminths, protozoa)	Almost sterile (if not cross contaminated by faeces)	Pathogens (bacteria, viruses, helminths, protozoa)
Value	Reuse potential (for irrigation or municipal and non potable domestic use)	Nutrients (N, K and P) Ideal fertilizer	Good soil conditioner but only little nutrients.

SCBP: Sustainable Sanitation & Water Management

Wednesday, 20 February 2019

19

SANITATION AND THE NEXUS

SCBP: Sustainable Sanitation & Water Management

Wednesday, 20 February 2019

20

SANITATION AND THE NEXUS

SCBP: Sustainable Sanitation & Water Management

Wednesday, 20 February 2019

21

UNDERSTAND YOUR SYSTEM

SCBP: Sustainable Sanitation & Water Management

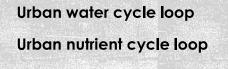
UNDERSTAND YOUR SYSTEM

Define system boundaries

- Physical, Political, Social and Economical boundaries
- Identify local water cycle
- Identify local nutrient cycle
- Identify problems, root cause, linkages

SCBP: Sustainable Sanitation & Water Management

Wednesday, 20 February 2019


23

SCBP: Sustainable Sanitation & Water Management



25 CLOSING THE LOOP!

SCBP: Sustainable Sanitation & Water Management

Wednesday, 20 February 2019

SCBP: Sustainable Sanitation & Water Management

Thank you...

+91 20640 00736 | +91 20245 30061

ecosan@ecosanservices.org

www.ecosanservices.org

SCBP: Sustainable Sanitation & Water Management

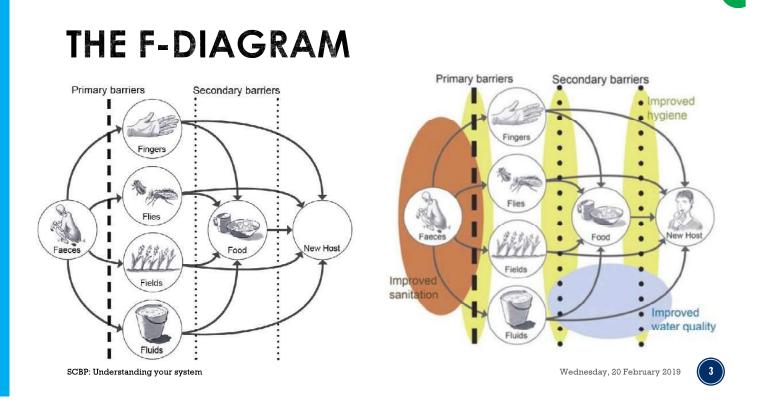
Wednesday, 20 February 2019

32

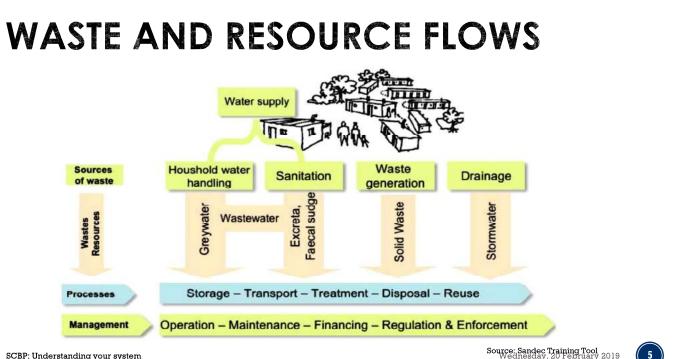
SANITATION CAPACITY BUILDING PLATFORM

Group Work – Understand Your System

Mr. Saurabh Kale, Sr. Project Manager Mr. Dhawal Patil, General Manager (Operations)


NATURAL AND BUILT ENVIRONMENT

SCBP: Understanding your system

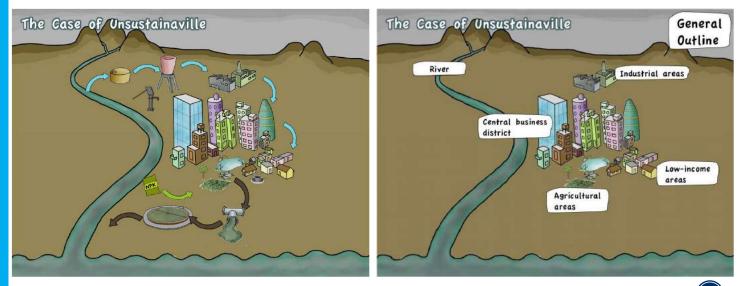

Source: Sandec Training Tool Wednesday, 20 February 2019

2

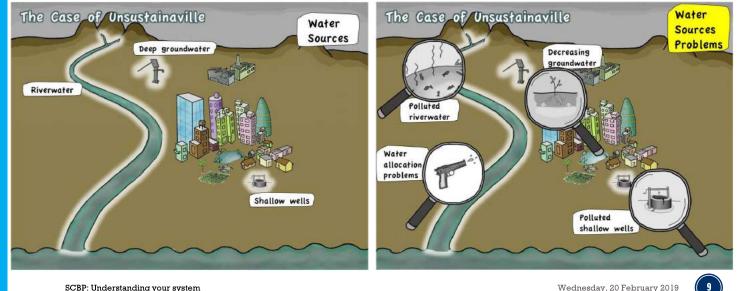
ENVIRONMENTAL SANITATION

SCBP: Understanding your system

UNDERSTANDING 6 YOUR SYSTEM

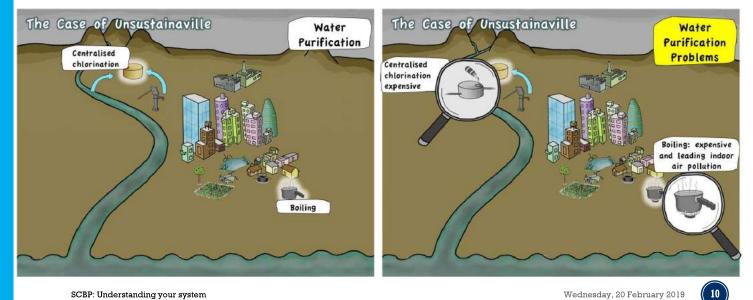

OBJECTIVES

- To get an overview of your local water and nutrient cycle.
- To identify root causes, and how problems are linked.
- To get a deeper understanding of the interrelationships between water resource, sanitation and agriculture.

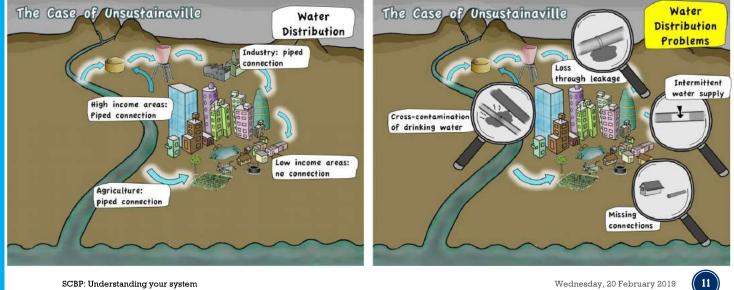

SCBP: Understanding your system

Wednesday, 20 February 2019

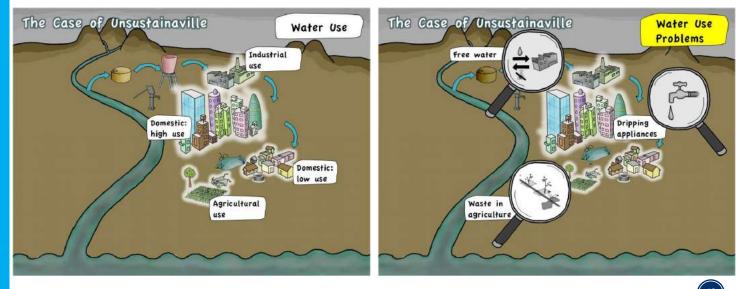
THE CASE OF UNSUSTAINAVILLE


MAPPING WATER SOURCES

SCBP: Understanding your system


Wednesday, 20 February 2019

WATER PURIFICATION


SCBP: Understanding your system

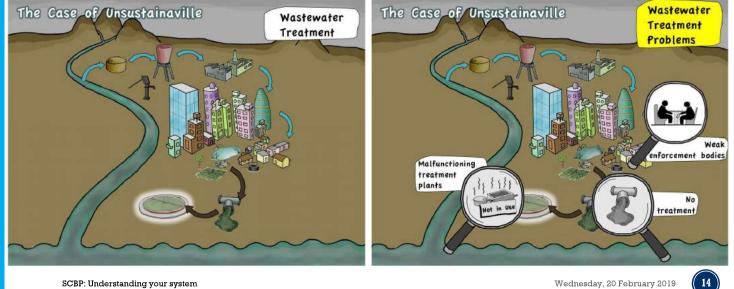
WATER DISTRIBUTION

SCBP: Understanding your system

WATER CONSUMPTION

SCBP: Understanding your system

12


WASTEWATER COLLECTION The Case of Unsustainaville The Case of Unsustainaville Wastewater Collection

Drains

Pipes

WASTEWATER TREATMENT

SCBP: Understanding your system

Wednesday, 20 February 2019

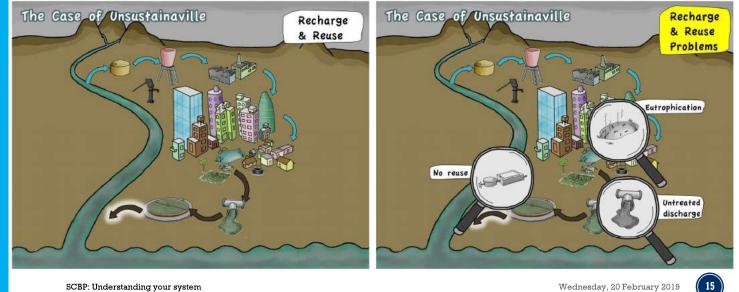
Pipes ending

in the open

Wastewater

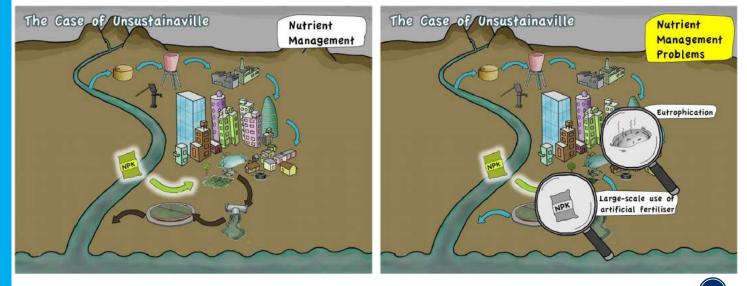
Collection

Problems


Stagnant pools of astewater

> Wastewater in open drains very unhygienic

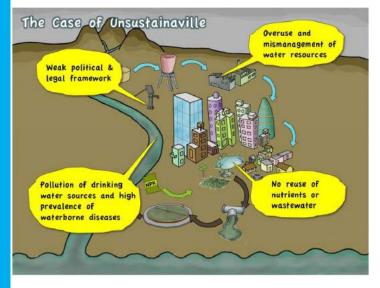
> > 13


14

WASTEWATER REUSE

SCBP: Understanding your system

SOURCE OF FERTILIZER


SCBP: Understanding your system

Wednesday, 20 February 2019

SCBP: Understanding your system

MAIN PROBLEM AREAS

- Weak political & legal framework
- Overuse & mismanagement of water resources
- Pollution of drinking water sources
- No reuse whatsoever!

SCBP: Understanding your system

CREDITS

- The complete exercise has been developed through material available on <u>www.sswm.info</u>
- The article has been compiled by Katharina Conradin, Michael Kropac, Dorothee Spuhler of seecon International gmbh.
- All the pictures belong to seecon International gmbh.

SCBP: Understanding your system

Wednesday, 20 February 2019

19

Thank you...

+91 20640 00736 | +91 20245 30061
 ecosan@ecosanservices.org
 www.ecosanservices.org

Wednesday, 20 February 2019

SANITATION CAPACITY BUILDING PLATFORM

Sanitation Systems and Technologies

Mr. Dhawal Patil, M.Sc. Hydro Science and Engineering General Manager - Operations

CONTENTS

- Sanitation and its objectives
- Functional groups
- Sanitation systems
- Emergency sanitation infrastructure

Definition and objectives

SCBP: Sanitation systems and technologies

DEFINITION

- An intervention involving behaviour and facilities aiming at interrupting the disease cycle (faecal-oral disease transmission).
- Safe management of excreta.
- Hardware (toilets & sewers)
- Software (regulations & hygiene promotion)
- Access to basic vs. access to improved

Wednesday, 20 February 2019

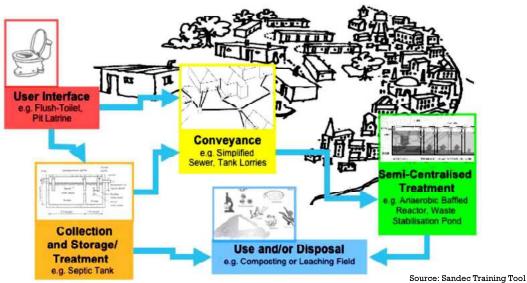
OBJECTIVES

- Protect and promote health
- Protect the environment
- Be simple
- Be affordable
- Be culturally acceptable
- Works for everyone

SCBP: Sanitation systems and technologies

Wednesday, 20 February 2019

FUNCTIONAL GROUPS


FUNCTIONAL GROUPS

- Technologies which perform the same, or similar function are grouped into "Functional Groups"
- A sanitation system is a combination of technologies through which the products flow.
- Only selected combinations of technologies will lead to functional systems.
- Domestic products mainly run through five different Functional Groups.

SCBP: Sanitation systems and technologies

Wednesday, 20 February 2019

FUNCTIONAL GROUPS

SCBP: Sanitation systems and technologies

Wednesday, 20 February 2019

USER INTERFACE

- The type of toilet, pedestal, pan or urinal the user comes in contact with.
- It is the place where water is introduced in the system.
- Determines the final composition of the product.
- The choice of user interface is often dependent on the availability of water.

USER INTERFACE

Pour flush toilet

Low flush toilet SCBP: Sanitation systems and technologies

Cistern flush toilet

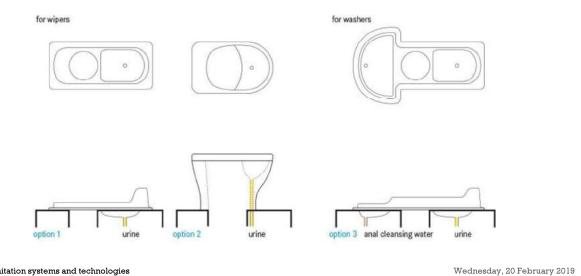
Urine diversion dehydration toilet

Urine diversion flush toilet

Source: SSWM Tool Box

11

Vacuum toilet



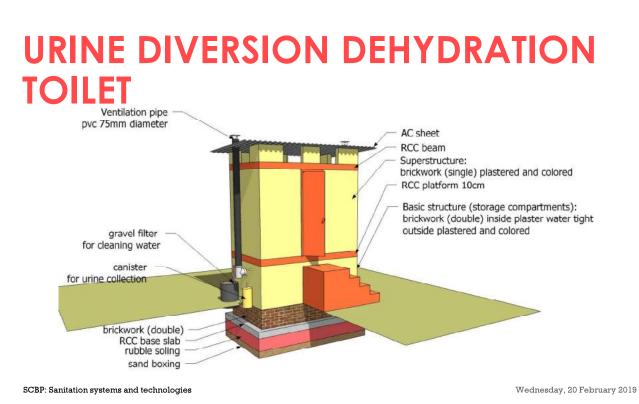
Urinals Wednesday, 20 February 2019

TECHNICAL AND PHYSICAL CRITERIA

- Availability of space (especially in case of urban poor)
- Ground condition (rock, sandy, loam)
- Groundwater level and contamination (coastal towns and cities having sandy strata)
- Water availability (small towns and emerging cities)
- Climate (temperature, rainfall, sunlight)

URINE DIVERSION DEHYDRATION TOILET

SCBP: Sanitation systems and technologies


URINE DIVERSION DEHYDRATION TOILET


Source: Waffler (2010); UNESCO-IHE (n.y.)

SCBP: Sanitation systems and technologies

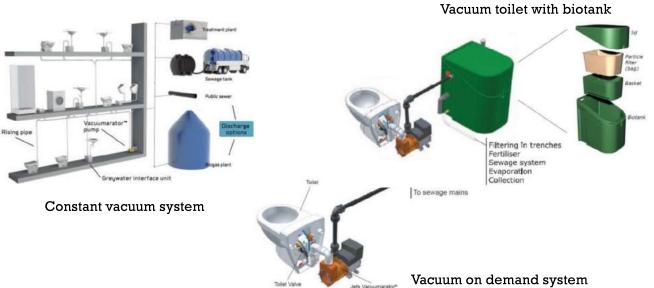
Source: Tilley et al. 2014

URINE DIVERSION FLUSH TOILET

Wednesday, 20 February 2019

16

URINE DIVERSION FLUSH TOILET


Source: dubbletten nu; gustavsberg.com; stman.se; rroevac.de

SCBP: Sanitation systems and technologies

Wednesday, 20 February 2019

17

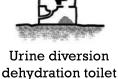
VACUUM TOILET

SCBP: Sanitation systems and technologies

Wednesday, 20 February 2019

COLLECTION & STORAGE/TREATMENT

- The ways of collecting and storing products generated at the user interface.
- Storage often also performs some level of treatment.
- The units are connected to soakaway zone or conveyance system for discharge of liquid.
- The units have to be regularly emptied for solids.


COLLECTION & STORAGE/TREATMENT

Biogas reactor

yurunon tonet

Anaerobic baffled reactor

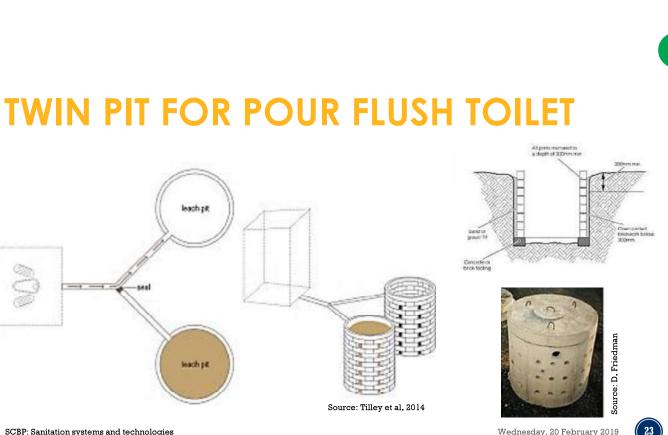
Anaerobic up-flow reactor

Wednesday, 20 February 2019

Source: SSWM Tool Box

SCBP: Sanitation systems and technologies

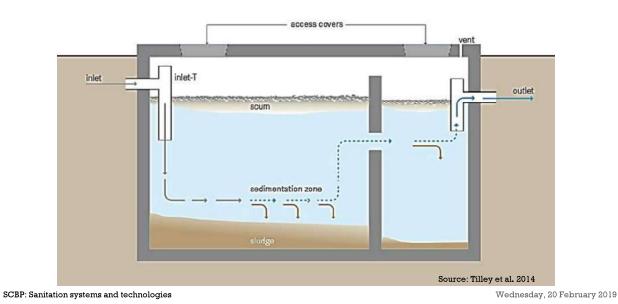
TECHNICAL AND PHYSICAL CRITERIA

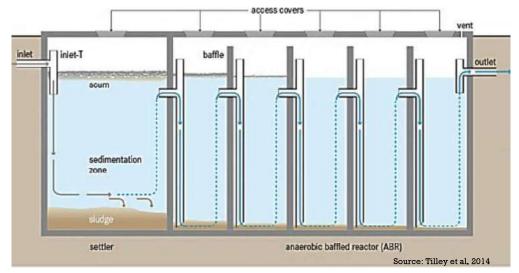

Ground condition

- Soil and strata (percolation and cost of construction)

Groundwater level and contamination

- Cross contamination (pathogens)
- Climate
 - Temperature (degree of treatment) and rainfall (percolation rate)

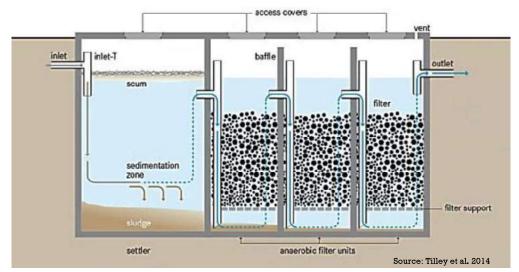

Wednesday, 20 February 2019


SCBP: Sanitation systems and technologies

Wednesday, 20 February 2019

SEPTIC TANK

ANAEROBIC BAFFLED REACTOR



SCBP: Sanitation systems and technologies

Wednesday, 20 February 2019

25

ANAEROBIC UP-FLOW FILTER

SCBP: Sanitation systems and technologies

Wednesday, 20 February 2019

CONVEYANCE

- The way in which products are moved from one process to another.
- Products may need to be moved in various ways to reach the required process.
- The longest and most important gap lies between user interface and treatment stage.

CONVEYANCE

Conventional sewers

Simplified sewers

Human powered Emptying & transport

Motorised Emptying & transport

Source: SSWM Tool Box

29

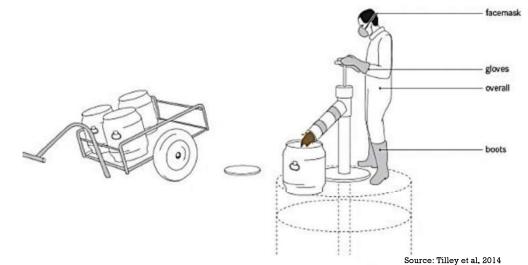
sewers

Small bore Vac

Vacuum sewers

SCBP: Sanitation systems and technologies

Pumping stations


Transfer stations

Wednesday, 20 February 2019

TECHNICAL AND PHYSICAL CRITERIA

- Water availability
 - Centralized, decentralized and choice of conveyance
- Ground condition
 - Rocky and high water table increases cost of construction
- Groundwater level and contamination
 - Choice of conveyance

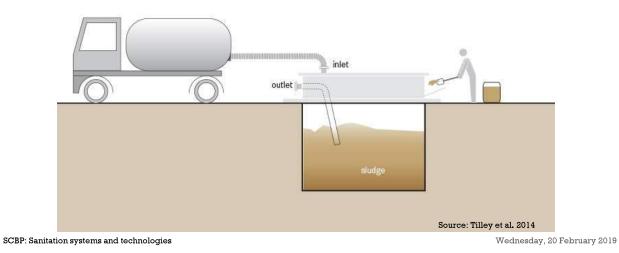
HUMAN POWERED EMPTYING

SCBP: Sanitation systems and technologies

Wednesday, 20 February 2019

31

GULPER


SCBP: Sanitation systems and technologies

Wednesday, 20 February 2019

SCBP: Sanitation systems and technologies

TRANSFER STATION

34

urce:

SEMI-CENTRALISED TREATMENT

- Are larger in size.
- Require a greater inflow.
- More skilled operation.
- WSP, Aerated lagoons, ASP, SBR, MBBR, FBR, UASB, Anaerobic treatment, Constructed wetlands etc.

SEMI-CENTRALISED TREATMENT

UASB

ASP

Trickling filter

SBR

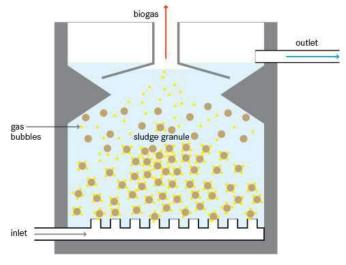
MBR

Aerated ponds

Advanced integrated ponds

Constructed wetlands

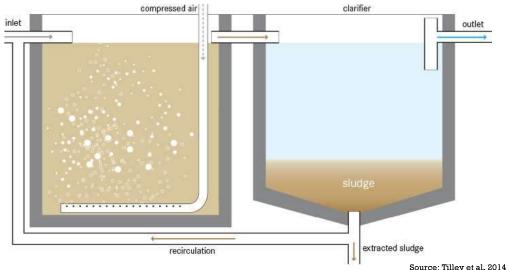
SCBP: Sanitation systems and technologies


Wednesday, 20 February 2019

TECHNICAL AND PHYSICAL CRITERIA

- Availability of space and other resources (Choice of technology)
- Climate (Temperature affects rate of reactions)
- Ground condition (Flood prone area)
- Groundwater level and contamination (Cross contamination from tanks underground)

UASB REACTOR

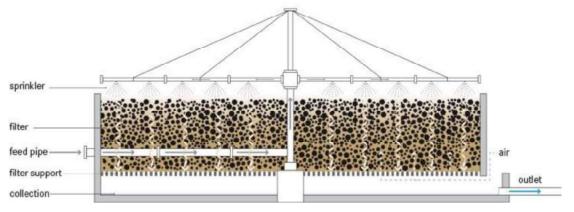

SCBP: Sanitation systems and technologies

Source: Tilley et al. 2008

Wednesday, 20 February 2019

(39

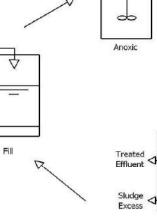
ASP TREATMENT

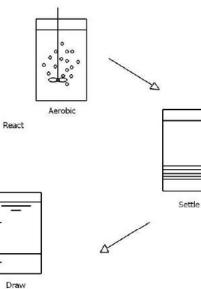

SCBP: Sanitation systems and technologies

Source: Tilley et al. 2014 Wednesday, 20 February 2019

41

TRICKLING FILTER

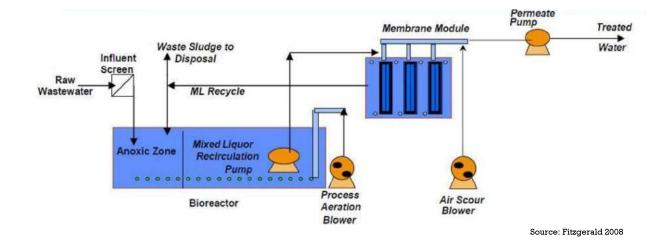



Source: Tilley et al. 2014

SCBP: Sanitation systems and technologies

Wednesday, 20 February 2019

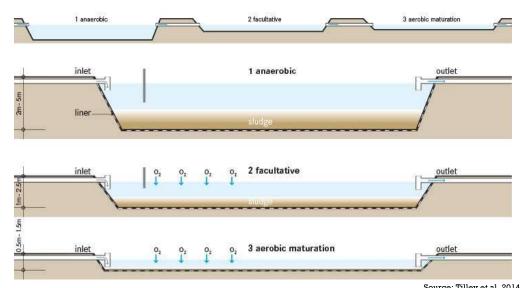
SBR



SCBP: Sanitation systems and technologies

Wednesday, 20 February 2019

MBR

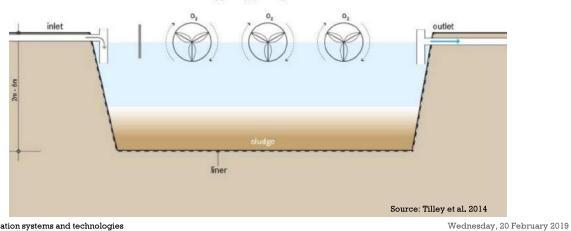


SCBP: Sanitation systems and technologies

Wednesday, 20 February 2019

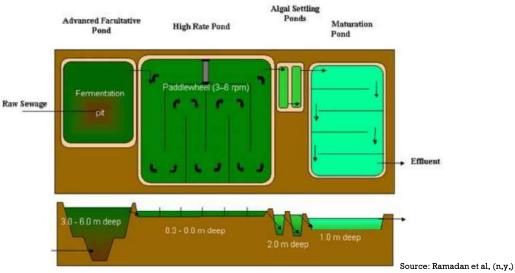
43

WSP TREATMENT

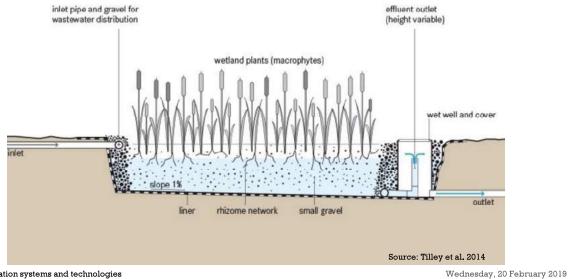


SCBP: Sanitation systems and technologies

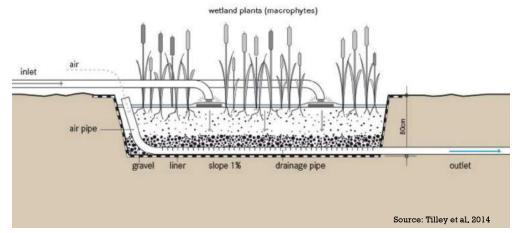
Source: Tilley et al. 2014 Wednesday, 20 February 2019


AERATED POND TREATMENT

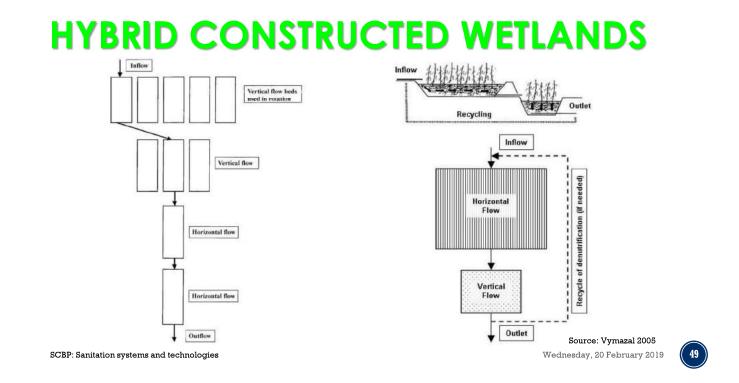
oxygen supply through aerators


SCBP: Sanitation systems and technologies

ADVANCED INTEGRATED PONDS


SCBP: Sanitation sy

CONSTRUCTED WETLANDS (HORIZONTAL FLOW)


SCBP: Sanitation systems and technologies

CONSTRUCTED WETLANDS (VERTICAL FLOW)

SCBP: Sanitation systems and technologies

Wednesday, 20 February 2019

Functional group

SCBP: Sanitation systems and technologies

USE AND/OR DISPOSAL

- The ways in which products are ultimately returned to the soil, either as harmless substances or useful resources.
- Products can also be re-introduced into the system as new products.
- Products Dehydrated faeces, Sterilized urine, Treated wastewater, Treated sludge

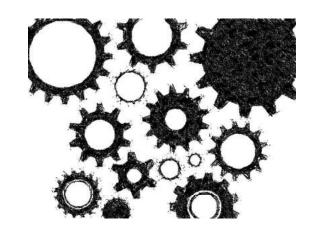
SCBP: Sanitation systems and technologies

Wednesday, 20 February 2019

USE AND/OR DISPOSAL

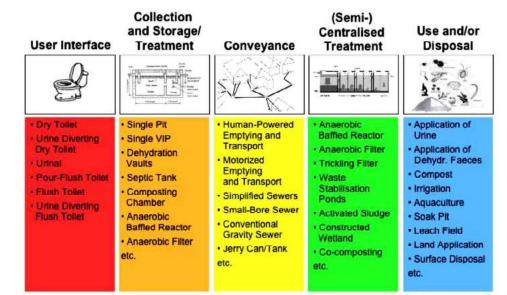
- Agriculture
- Aquaculture
- Recharge or disposal
- Energy products from sludge

SCBP: Sanitation systems and technologies



Wednesday, 20 February 2019

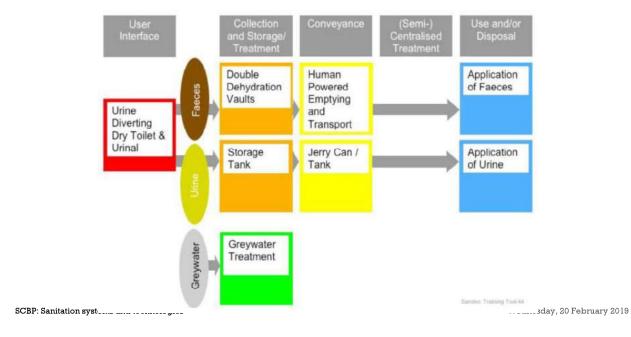
Wednesday, 20 February 2019

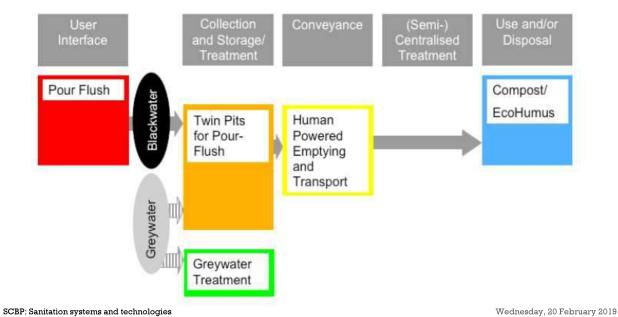


SANITATION SYSTEM

Only selected combinations of technologies will lead to functional systems!

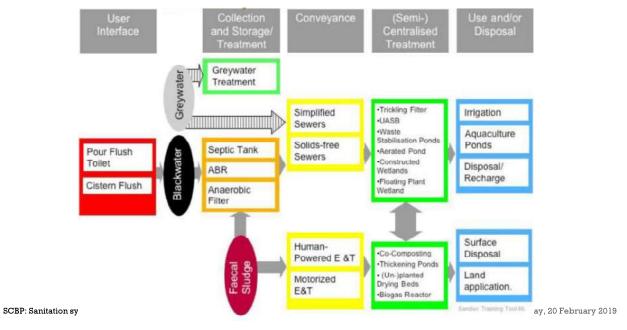
SCBP: Sanitation systems and technologies


SANITATION VALUE CHAIN


SCBP: Sanitation systems and technologies

Source: Sandec Training Tool Wednesday, 20 February 2019

CASE 1 WATERLESS SYSTEM WITH URINE DIVERSION



CASE 2 WATER BASED, ALTERNATING DOUBLE PIT

56

CASE 3 WATER BASED, SMALL BORE SYSTEM

57

Thank you...

+91 20640 00736 | +91 20245 30061
ecosan@ecosanservices.org

www.ecosanservices.org

SCBP: Sustainable Sanitation & Water Management

SANITATION CAPACITY BUILDING PLATFORM

Control Parameters Wastewater Treatment Processes

Prof. Dr. P. A. Sadgir, College of Engineering, Pune

OUNDATION

<u>Sewage or Wastewater</u> is the used water or liquid waste of a community, which includes

- human and household waste
- street washings
- industrial waste
- ground and storm water

Waste water Classifation

- **Sewage** All domestic, commercial waste water
- **Sullage** waste water from kitchen, bathroom, wash basin, other than W.C.
- Industrial Waste water- water from industrial processes
- Ground water infiltration
- Storm water

Characteristics of waste water

- Physical-
- Chemical
- Biological-

Physical Characteristics of waste water

- Color,
- Odor,
- Temperature,
- Dissolved
 - Oxygen

Solids

- Biodegradable,
- non biodegradable,
- settle able,
- suspended,
- volatile, fixed,
- dissolved etc

Chemical –Characteristics of waste water

- ▶ pH,
- Biochemical
 Oxygen Demand,
- Chemical Oxygen Demand,
- Total Organic Carbon,
- Nitrogen, Ammonia
- Phosphorus,

- Sulphates,
- Heavy metals like Iron, Chromium
- fats,
- Oils & grease,
- pesticides,
- detergents,
- toxic element

Biological- Characteristics of waste water

- Viruses,
- Fungi,
- Algae,
- Protozoa,
- Rotifer,
- Ciliates,

- Bacteria
- (aerobic, anaerobic, facultative),
- Pshychrophylic Bacteria
 0-5 degrees C
- Mesophilic bacteria
 20- 40 degrees C
- Thermophilic bacteria 40-60 degrees C

The pH

The hydrogen ion concentration expressed as pH, is a valuable parameter in the operation of biological units. The pH of the fresh sewage is slightly more than the water supplied to the community.

However, decomposition of organic matter may lower the pH, while the presence of industrial wastewater may produce extreme fluctuations.

Generally the pH of raw sewage is in the range 5.5 to 8.0.

Temperature:

The normal temperature of sewage is slightly higher then water temperature.

Temperature above normal indicate inclusion of hot industrial wastewaters in sewage

<u>Colour</u>:

Fresh sewage is light grey in colour. While the old sewage is dark grey in colour.

At a temperature of above 20° c, sewage will change from fresh to old in 2 ~ 6 hours.

<u>Odour</u>:

Fresh domestic sewage has a slightly soapy or oil odour.

Stale sewage has a pronounced odour of Hydrogen Sulphide (H_2S).

Solids:-

Solids in sewage may be suspended or in solution solids are a measure of the strength of sewage.

SOLIDS

TOTAL SOLIDS:-

Include both suspended and dissolved solids.

It is measured by evaporating a known volume of sample and the weighting the residue.

Results are expressed in mg/l

SUSPENDED SOLIDS:-

These are solids which are pertained on a pre-weighed glass fiber filter of $0.45 \ 103-105^{\circ}C$

DISSOLVED SOLID:-

Filtrate which has passed thought 0.45µ filter is evaporated in chine dish.

The residue gives the dissolved solids.

SETTLEABLE SOLIDS:-

It is the fraction of the solids that will settle in an imhoff cone in 30-60 minutes.

These are expressed as mg/l.

VOLATILE SUSPENDED SOLIDS

They give a rough measure of the organic content or in some instances of the concentration of BIOLOGICAL SOLIDS such as bacteria.

The determination is made by ignition of residues on 0.45μ filter in a Muffle furnace at 550° C.

The residues following the ignition is called <u>non-</u> <u>volatile solids</u> or <u>ash</u> and is rough measure of the mineral content of the waste water.

(Note:- Most of the inorganic and mineral content do not volatilize at 550° C and are quiet resistant)

COD (Chemical Oxygen Demand)

It describes how much oxygen is required to oxidise all organic and inorganic matter.

It is expressed in mg/L

It is the amount of oxygen required to oxidize organic matter chemically (biodegradable and non-biodegradable) by using a strong chemical oxidizing agent. $(K_2Cr_2O_7)$ in an acidic medium. For a single waste water sample the value of COD will always be greater then BOD.

The oxidant $(K_2Cr_2O_7)$ remaining is found out to find $K_2C_{r2}O_7$ considered COD and BOD can be interrelated.

BOD(Biochemical Oxygen Demand)

Is always a fraction of COD.

It denotes the amount of oxygen required by the microorganisms to decompose organic matter

Bacteria placed in contact with organic matter will utilize it as food source.

In the utilization of the organic material it will eventually be oxidized to stable and products such as CO_2 and H_2O . "The amount of oxygen required by the bacteria to oxidize the organic matter present in sewage to stable end products is known as biochemical oxygen demand."

Nitrogen

The principal nitrogen compounds in domestic sewage are proteins, amines, amino acids, and urea.

Ammonia nitrogen in sewage results from the bacterial decomposition of these organic constituents.

Nitrogen being an essential component of biological protoplasm, its concentration is important for proper functioning of biological treatment systems and disposal on land.

Generally, the domestic sewage contains sufficient nitrogen, to take care of the needs of the biological treatment.

For industrial wastewater if sufficient nitrogen is not present it is required to be added externally. Generally nitrogen content in the untreated sewage is observed to be in the range of 20 to 50 mg/L measured as TKN

Phosphorus

Phosphorus is contributing to domestic sewage from food residues containing phosphorus and their breakdown products.

The use of increased quantities of synthetic detergents adds substantially to the phosphorus content of sewage.

Phosphorus is also an essential nutrient for the biological processes.

The concentration of phosphorus in domestic sewage is generally adequate to support aerobic biological wastewater treatment. However, it will be matter of concerned when the treated effluent is to be reused.

The concentration of PO_4 in raw sewage is generally observed in the range of 5 to 10 mg/L.

Sr. No.	Item	Values in sewage gm per capita
		per day
1	BOD ₅	45-54
2	COD	1.6 to 1.9 BOD ₅
3	Total organic Carbon	0.5 to 1.0 BOD _{5 (soluble)}
4	Total Solids	170-220
5	Suspended Solids	70-145
6	Grit	5-15
7	Alkalinity, as CaCO ₃	20-30
8	Chlorides	4-8
9	Nitrogen, total as N	6-12
	Organic Nitrogen	0.4*Total N
	Free Ammonia	0.62 to Total N
	Nitrate & Nitrate Nitrogen	Absent
10	Phosphorus, Total, as P	0.8-4.0
	Organic phosphorus	0.3* Total P
	Inorganic	0.7*Total P
11	Potassium, as K ₂ O	2.0-6.0

	Weak	Medium	Strong
Solids, total (TS), mg/L	350	720	1200
Total dissolved (TDS), mg/L	250	500	850
Total suspended (TSS), mg/L	100	220	350
Settleable solids, mg/L	5	10	20
BOD_5 , mg/L	110	220	400
TOC, mg/L	80	160	290
COD, mg/L	250	500	1000
Nitrogen (total as N), mg/L	20	40	85
Organic, mg/L	8	14	35
Free ammonia, mg/L	12	25	50
Nitrites + nitrates, mg/L	0	О	О
Phosphorus (total as P), mg/L	4	8	15
Organic, mg/L	1	3	5
Inorganic, mg/L	3	5	10
Chlorides, mg/L	30	50	100
Sulfate, mg/L	20	30	50
Alkalinity, mg/L as $CaCO_3$	50	100	200
Grease, mg/ B	50	100	150
Total coliform, no/100	106~107	107~108	10^{7} ~ 10^{9}

How is Wastewater Treated to Remove Pollutants?

Physics, Chemistry, Microbiology, mathematics and Engineering are all involved in purifying wastewater so that it can be safely returned to the environment.

Standards for discharge of sewage and industrial effluents in surface

Water source (rivers, lakes, reservoirs,

Sr. No.	CHARACTERISTI C OFTHE EFFLUENTS	DISCHARGE INTO SURFACE WATER SOURCES AS PER IS 4764-1973.	TOLERANCE LIMITS FOR INDUSTRIAL EFFLUENT DISCHARGE INTO INLAND SURFACE WATERS AS PER IS 2490- 1974.	TOLERANCE LIMITS FOR DISCHARGE INTOPUBLIC SEWERS AS PER IS 3306-1974
1	BOD ₅	20 mg/lit	30 mg/lit	500 mg/lit
2	COD	250 mg/lit	250 mg/lit	
3	pH value	5.5 - 9	5.5 - 9	5.5 - 9
4	Total Suspended solids	30 mg/lit	100 mg/lit	600 mg/lit
5	Ammonia & Nitrogen	50 mg/lit	50 mg/lit	50 mg/lit
6	Oil & groese	Nil	10 mg/lit	100 mg/lit
7	Temp.	40 0	40 °c	45 °c

Physical treatment

Screening	Removal floating matter		
Comminuting	Cutting, grinding of coarse matter		
Flow equalization	Equalization of flow		
Mixing	Mixing of chemicals, gases		
Flocculation	Promotion of flock formation & gravity sedimentation		
Sedimentation	Separation of settle able solids		
Floatation	Removal of very fine, particle		
Filtration	Removal of very fine residue		
Micro screening	Same as above with microorganism		

Treatment of waste water

- Preliminary
- Primary
- Secondary
- Tertiary
- Centralized Treatment or Off site treatment
- Decentralized treatment or Onsite treatment

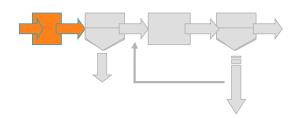
- Physical Treatment
- Biological Treatment
- Chemical Treatment
- Conventional Treatment
- Low cost treatment
- Aerobic Treatment
- Anaerobic treatment

Biological Treatment

- Biological plants are more commonly used to treat domestic or combined domestic and industrial wastewater from a municipality.
- They use basically the same processes that would occur naturally in the receiving water, but give them a place to happen under controlled conditions, so that the cleansing reactions are completed before the water is discharged into the

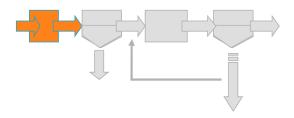
environment.

Biological treatment

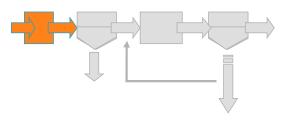

- Aerobic
- Activated sludge Process
 Trickling filter
- Septic Tank
- Oxidation pond
- Aerated lagoon
- Oxidation ditch
- Rotating biological contactor

Stabilization pond

Digester

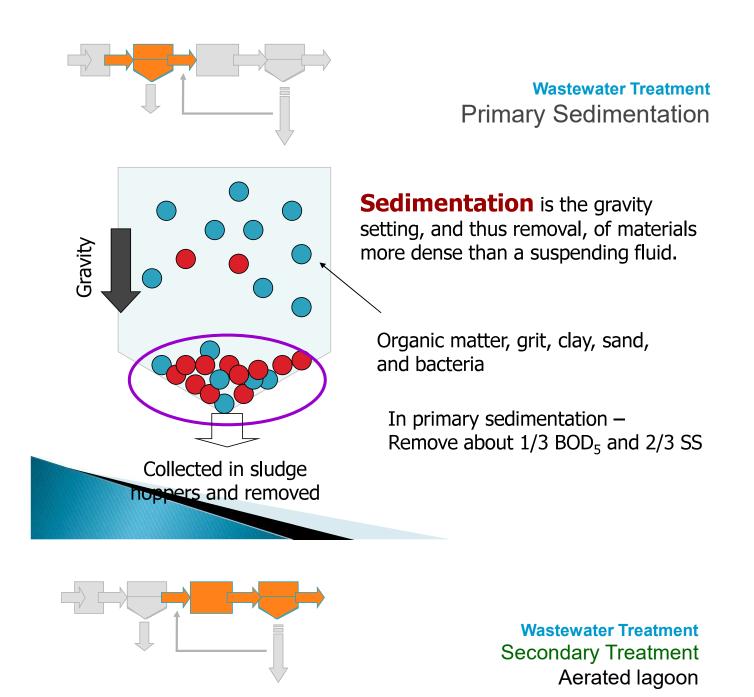

- U A S B Reactor
- Anaerobic filter

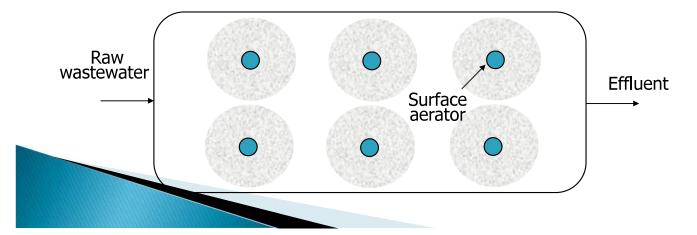
Wastewater Treatment Preliminary Operations


- To remove materials that will interfere with subsequent treatment processes.
 - Materials : sticks, logs, shoes, dead animals, etc.
- Grit is removed.

 It will cause undue wear on piping and pumping system.

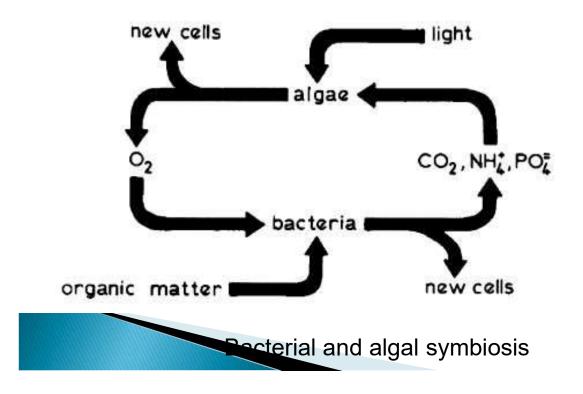
- Foreign objects can create serious problems for equipment at a treatment plant.
- Possible problems are clogging pumps or smaller piping within the plant.
- Bar racks can be cleaned either mechanically or manually
- The bar spacing : 0.5cm 3 or 4 cm




Wastewater Treatment Preliminary Operations Grit Removal

Grit

- O Composed primarily of sand, cinders, and gravel
- O It cause excessive wear in pipes and pumps
- It accumulates in downstream tanks where flow velocities are insufficient to keep it in suspension. As grit accumulates, it reduces the effective tank volumes and thus treatment effectiveness
- Grit removal
 - By gravity settling (the high specific gravity of grit)
 - O Grit chambers are relatively small

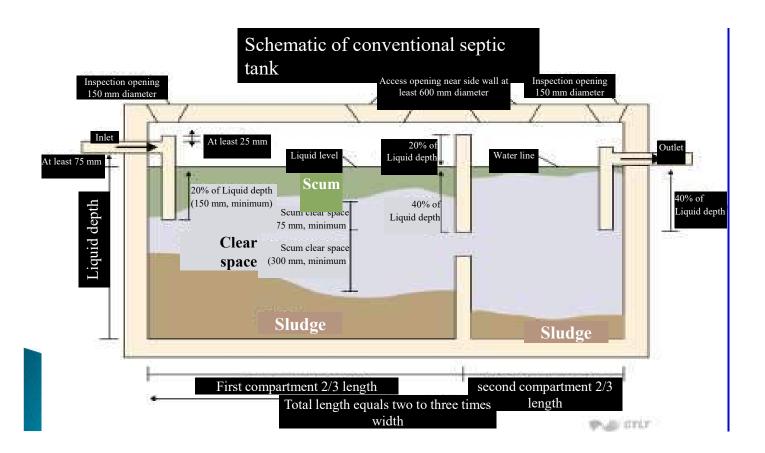


- Suspended growth system
- Completely mixed mode
- Contact time limited to hydraulic retention time due to no recycle of sludge
- Limited effluent quality

Principle of Aerobic Process

Oxidation Pond

Advantages


- O Low cost
- O Suitable in hot countries like India
- Simplicity of construction
- O Excellent pathogen removal
- Ability to treat a variety of wastes
- O Toleration of organic and hydraulic shock loads
- O Low maintenance requirements
- O Low sludge production
- Reliability of operation
- O Simple land reclamation

Limitations

- Extensive land area requirement
- Assimilative capacity of certain industrial waste is poor.
- Encroachment on pond site in urban area

The Septic Tank

Recommended Sizes of Septic Tank Up to 20 Users

No of users	Length (m)	Breadth (m)	readth (m) Liquid Depth with Cleaning interval 2 yrs.	
5	1.5	0.75	1.0	1.05
10	2.0	0.90	1.0	1.40
15	2.0	0.90	1.3	2.00
20	2.3	1.10	1.3	1.80

SANITATION CAPACITY BUILDING PLATFORM

Anaerobic Baffle Reactor (ABR) and Constructed Wetlands (CW)

Ms. Radhika Boargaonkar Project Manager Ecosan Services Foundation

CONTENTS

- Control parameters
- Dimensioning parameters
 - Hydraulic load
 - Organic load
 - Sludge volume

- Design fundamentals
 - Anaerobic baffled reactor
 - Constructed wetland
- Design flaws

Sludge volume, Sludge retention time

SCBP: Sustainable Sanitation & Water Management

CONTROL PARAMETERS

- Volume
- Solids
- Fat, grease and oils
- Turbidity, colour and odour
- COD and BOD

- Nitrogen
- Phosphorus
- Temperature and pH
- Volatile fatty acids
- Dissolved oxygen
- Pathogens

Daily flow, Peak flow, Up-flow velocity, Hydraulic retention time, Hydraulic conductivity of filter media

HYDRAULIC LOAD

- Volume of wastewater to be applied per volume of reactor
- Dimension: (m³/d) of load per m³ volume of reactor
- Determines velocity of water in the reactor
- Critical parameter if organic loading rate is less

HYDRAULIC LOAD

Design parameters to be considered while dimensioning of the system;

- Daily flow (m³/d)
- Peak flow (m³/h)
- Up flow velocity (m/h)
- Hydraulic retention time (h)
- Hydraulic conductivity of filter media (m/d)

SCBP: Sustainable Sanitation & Water Management

DAILY FLOW AT HOUSEHOLD LEVEL

- Difficult to determine on field;
 - Water consumption of different activities
 - Per capita water consumed
 - Capacity of overhead/underground tanks and pumping frequency
 - Water meter/ tanker loads

DAILY FLOW AT COMMUNITY LEVEL

- According to CPHEEO manual;
 - 80-85% of the per capita water consumption is converted into wastewater
 - Safety factor needs to be considered for infiltration and exfiltration.

SCBP: Sustainable Sanitation & Water Management

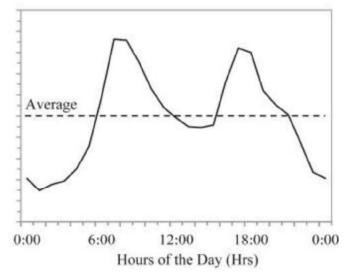
EXAMPLE: DAILY FLOW CALCULATION

Household wastewater calculations

- No. of users: 4
- Water supply: 135 lpcd
- Wastewater generation: 80%
- Total wastewater generation= 432 L/d ~ 0.4 m³/d

Community Toilet Block

- No. of seats: 6
- No. of families per seat: 4 (family size: 5)
- No. of uses per person: 2
- Water per use: 10 L
- Total wastewater(black) generation=
 2400 L/d ~ 2.4 m³/d


PEAK FLOW

- Peak hours: The duration for which most water is consumed
- Peak flow: Flow of wastewater generated during peak hours

Peak hour flow rate = $\frac{Total \ daily \ flow}{\left[\frac{m^3}{d}\right]}/_{Peak \ hours} \left[\frac{h}{d}\right]$

SCBP: Sustainable Sanitation & Water Management

DIURNAL CURVE

- Wastewater generation rate changes every hour of the day
- DTS should be capable of handling the highest flow rate of the day

EXAMPLE: PEAK FLOW CALCULATION

Community toilet block

Peak hours: 3-6 h/d

• Peak flow =
$$\frac{2.4 \left[\frac{m^3}{d}\right]}{6 \left[\frac{h}{d}\right]}$$

= 0.4 m³/h

Entity	Peak hours (h)
Residential housing	8 – 10
Public toilet	12 - 16
Community toilet	4 – 6
Commercial complex	4 – 6
Factories	2 - 4

SCBP: Sustainable Sanitation & Water Management

UP FLOW VELOCITY

Velocity of water in the reactor in upward direction

Up flow velocity = $\frac{Peak flow \left[\frac{m^3}{h}\right]}{Area of each chamber [m^2]}$

- Up flow velocity < settling velocity
- Variation affects the treatment performance
- Higher up flow velocity = flush out of sludge
- Lower up flow velocity = larger reactor volumes

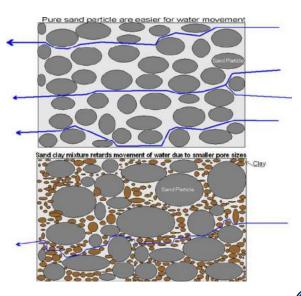
HYDRAULIC RETENTION TIME

Duration for which the batch of liquid resides in the reactor

Hydraulic retention time = $\frac{Volume \ of \ the \ rector \ [m^3]}{Daily \ flow \ [\frac{m^3}{d}]}$

- Relation between volume of water treated in a day to volume of the reactor
- Applicable to both sludge and wastewater

SCBP: Sustainable Sanitation & Water Management


IMPORTANCE OF HRT

- HRT directly proportional to treatment performance
- Higher HRT = Higher reactor volume = Higher costs
- Lower HRT = Low treatment efficiency

HYDRAULIC CONDUCTIVITY

- Velocity at which liquid travels through the filter media.
- Hydraulic conductivity inversely proportional to HRT.
- Higher HC = Lower treatment
 efficiency
- Lower HC = Chances of clogging

SCBP: Sustainable Sanitation & Water Management

Units, Organic loading rate, Wastewater strength, Composition of wastewater

ORGANIC LOAD

- Important dimensioning parameter for wastewater of higher strength (dairy, animal husbandry etc)
- Organic load: Mass per time (kg/d)
- Load [kg/d] = Concentration
 [mg/L]x Daily flow [m³/d] / 1000

Example:

- Daily flow = $2.4 \text{ m}^3/\text{d}$
- BOD₅ = 3000 mg/L
- Organic load = 7.2 kg/d

 ${\tt SCBP: Sustainable Sanitation \& Water Management} \\$

ORGANIC LOAD RATE (OLR)

• Permitted OLR varies for each module of DTS.

	Baffled reactor	Anaerobic filter	Anaerobic pond
BOD ₅ (kg/m ³ *d)	6.00	4.00	0.3-1.2
BOD5 removal	85%	85%	70%
Temperature	30 °C	30 °C	30 °C

- For a given system, the organic load handling capacity depends on the reactor temperature.
- Higher OLR = Poisoning; Lower OLR = insufficient bacteria

WASTEWATER STRENGTH

- Strength is measured in terms of BOD, COD and SS.
- In domestic wastewater,
 - the BOD is determined by dissolved solids (50%), settleable solids (33%) and non settleable solids (17%)
 - COD/BOD ratio is equal to or less than two.
- BOD contribution per person = 40-65 g/cap*d

SCBP: Sustainable Sanitation & Water Management

COMPOSITION OF DOMESTIC WASTEWATER

Parameter	Unit	Low strength	Medium strength	High strength
Total Solids (TS)	mg/L	390	720	1230
Total Dissolved Solids (TDS)	mg/L	270	500	860
Total Suspended Solids (TSS)	mg/L	120	210	400
Biological Oxygen Demand(bod)	mg/L	110	190	300
Chemical Oxygen Demand (COD)	mg/L	250	430	800
Total Nitrogen (TN)	mg/L	20	40	70
Total Phosphorus (TP)	mg/L	4	7	12
Oil and Grease	mg/L	50	90	100
Total Coliforms	no./100 mL	106-108	107-109	107-1010
Faecal Coliforms	no./100 mL	103-105	104-106	105-108

CALCULATIONS

	A	В	С	D	E	F	G
1	Wastewater production per capita						
2	user	BOD₅ per user	water consump. per user	COD / BOD ₅ ratio	daily flow of wastewater	BOD ₅ concentr.	COD concentr.
3	given	given	given	given	calcul.	calculated	approx.
4	number	g/day	litres/day	mg/l / mg/l	m³/day	mg/l	mg/l
5	80	55	165	1,90	13,20	333	633
6	range =>	40 - 65	50-300	8	0	2 2	

SCBP: Sustainable Sanitation & Water Management

C SLUDGE VOLUME

Importance of estimating sludge volume, Sludge retention time

SCBP: Sustainable Sanitation & Water Management

23

SLUDGE VOLUME

- Estimating sludge volume is required for dimensioning of the reactor.
- Accumulation of the sludge results into decrease in HRT.
- Biological sludge production is directly proportional to BOD removal.
- Aerobic digestion produces more sludge than anaerobic digestion.
- Sludge Retention Time in DTS: 24-36 months.

SCBP: Sustainable Sanitation & Water Management

Anaerobic Baffled Reactor (ABR)

Design description, Treatment efficiency, Criteria for design

DESIGN OF ABR

- Underground, closed tank with 4-8 chambers in series.
- Each chamber is designed to handle the hydraulic and organic loading.
- Chambers in series helps to digest complex degradable constituents.
- Active sludge at the bottom of the tank biologically treats the incoming wastewater.

SCBP: Sustainable Sanitation & Water Management

DESIGN OF ABR

- Dimensions of the chambers (width and length) depends on peak flow and up flow velocity.
- Importance of baffle pipes;
 - Direct the flow of wastewater in each chamber.
 - Ensures optimum contact of wastewater and activated sludge.
- Size and number of chambers define the HRT of the system.

TREATMENT EFFICIENCY

- One of the most efficient module of DTS.
- Efficiency is higher for higher organic loads.
- BOD removal: 70-95%; COD removal: 65-90%
- Efficiency is better if COD/BOD < 2
- Efficiency increases with the number of chamber and availability of active sludge.

 ${\tt SCBP: Sustainable Sanitation \& Water Management}$

DESIGN CRITERIA

Up flow velocity

- Up flow velocity should be maintained between 0.9-1.2 m/h
- Crucial parameter in case of higher hydraulic loads.

Organic load

- OLR < 6 kg BOD/m^{3*}d
- High OLR possible in higher temperature and lower strength of wastewater.

DESIGN CRITERIA

Retention time

- Should not be less than 8 hours.
- Efficiency is better for HRT between 12-24 hours.

Temperature

• Effective when temperature > $25 \, {}^{\circ}\text{C}$

Sludge volume

• Inoculation needs to be done during commissioning of the system.

 ${\tt SCBP: Sustainable Sanitation \& Water Management}$

Constructed Wetland (CW)

Design description, Treatment efficiency, Criteria for design

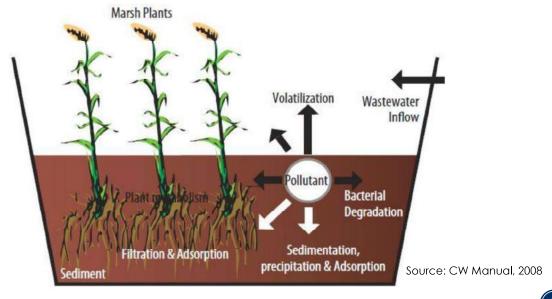
SCBP: Sustainable Sanitation & Water Management

DESIGN OF CW

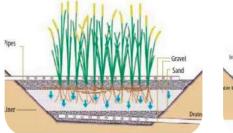
- Overground, shallow open tanks filled with graded filter material also known as substrate.
- Wastewater flows through the substrate and exists from the drain pipe which also helps to control depth of the water in the wetland.
- Types of constructed wetlands;
 - Horizontal flow
 - Vertical flow

DESIGN OF CW

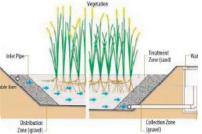
- Substrate: civil aggregates planted with wetland or aquatic species.
- Microbes gets attached to the substrate and are responsible for removal of soluble organic constituents.
- Incoming wastewater gets aerobic, anoxic and anaerobic treatment.
- Oxygen required for aerobic treatment is provided by atmospheric diffusion or by vegetation roots.

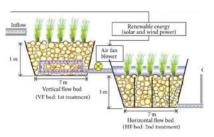

SCBP: Sustainable Sanitation & Water Management

Major Components –


Basin = Substrate = Vegetation = Liner = Inlet/Outlet arrangement system.

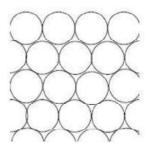
POLLUTANT REMOVAL MECHANISM

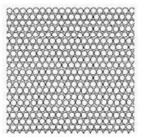



SCBP: Sustainable Sanitation & Water Management

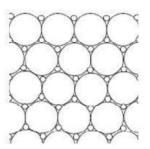
CW – TYPES

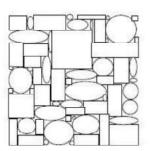
Vertical Flow




Horizontal Flow

Hybrid


INFLUENCE OF GRAIN SIZE AND SHAPE ON WETLAND PROPERTIES


Ø 25 mm pore space 22,1 % max pore size 2,8 mm spec. surface 143 m²/m³

Ø 5 mm pore space 45,7 % max pore size 0,6 mm spec. surface 652 m²/m³

Ø 5 mm and 25 mm pore space 23,9 % max pore size 1,6 mm spec. surface 164 m²/m³

mixed grain size mixed grain shape pore space and pore size unpredictable

Source: Ludwing Sasse, 1998

SCBP: Sustainable Sanitation & Water Management

TREATMENT EFFICIENCY

- Well designed and operated CW provides BOD removal of 50-70%.
- Pre treatment of wastewater is must for treating it with CW.
- CW is suitable for wastewater with low TSS and BOD.
- In DTS, CW is used to remove odour, colour and increase the DO of the water rather than reducing BOD.

DESIGN CRITERIA

Hydraulic conductivity

- Cross sectional area and hydraulic conductivity of the smallest gravels in the filter determine the conductivity.
- Hydraulic conductivity ~ 200 m/d

Temperature

- High efficiency is achieved at higher temperature.

Organic loading

OLR < 10 g BOD/m²*d

SCBP: Sustainable Sanitation & Water Management

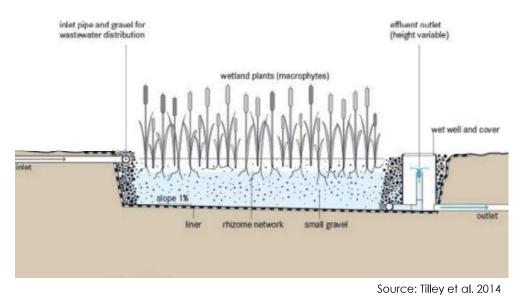
DESIGN CRITERIA

Retention time

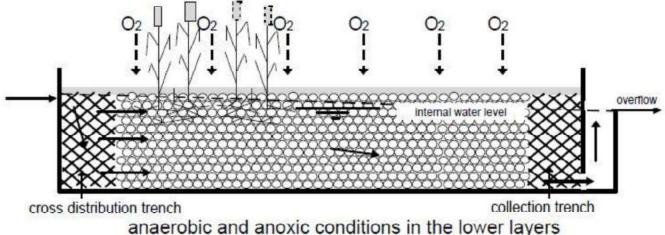
- Determined by the pore space available in filter media.
- Pore space ~ 30-40% of volume of filter.
- HRT: 2-3 days

Vegetation

- Facilitate efficient oxygen transfer to the root zone.
- Should have fibrous root system.
- Local species should be used.


DESIGN CRITERIA

Filter media & depth


- Evenly distribute the incoming pre treated wastewater.
- Provide surface area for microbial culture to get attached.
- Provide physical filtration for suspended solids.
- Provide good substrate for vegetation to grow.
- Depth: 0.6 0.9 m

SCBP: Sustainable Sanitation & Water Management

HF CONSTRUCTED WETLAND

HF CONSTRUCTED WETLAND - PRINCIPAL

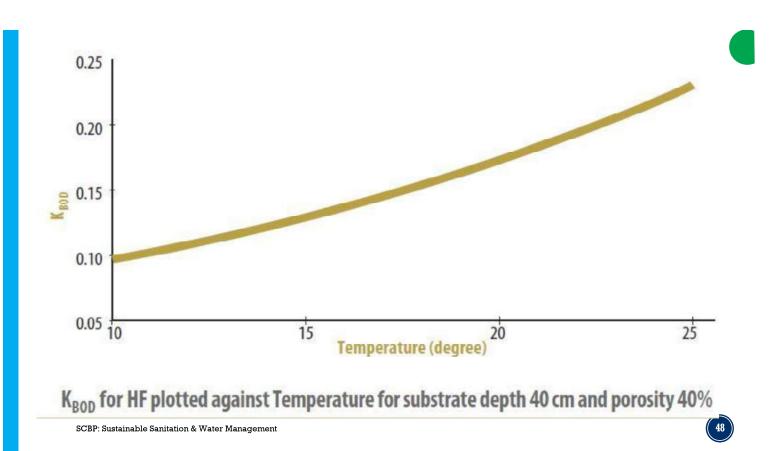
Source: Ludwing Sasse, 1998

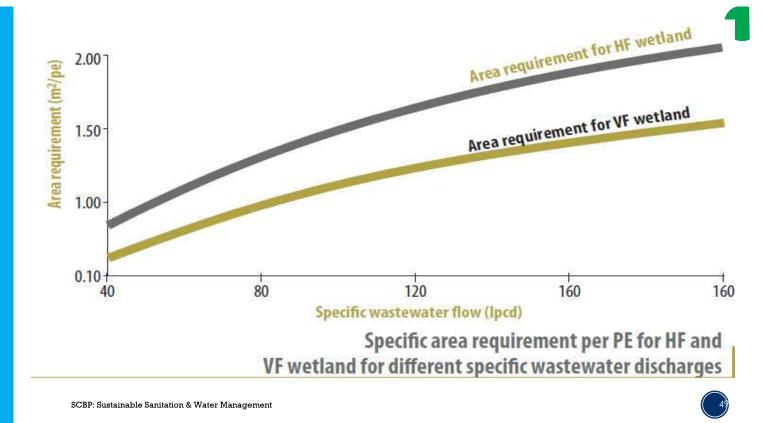
SCBP: Sustainable Sanitation & Water Management

SIZING OF THE WETLAND KICKUTH'S EQUATION

$$A_{h} = Q_{d} \left(\ln C_{i} - \ln C_{e} \right)$$

KBOD


- A_h = Surface area of bed (m²)
- Q_d = average daily flow rate of sewage (m³/d)
- C_i = influent BOD₅ concentration (mg/l)
- C_e = effluent BOD₅ concentration (mg/l)
- K_{BOD} = rate constant (m/d)


K_{BOD} is determined from the expression K_Tdn, where,

- $K_T = K_{20} (1.06)^{(T-20)}$
- K₂₀ = rate constant at 20 °C (d⁻¹)
- T = operational temperature of system (°C)
- d = depth of water column (m)
- n = porosity of the substrate medium (percentage expressed as fraction)

 K_{BOD} is temperature dependent and the BOD degradation rate generally increases about 10 % per °C. Thus, the reaction rate constant for BOD degradation is expected to be higher during summer than winter. It has also been reported that the K_{BOD} increases with the age of the system.

47

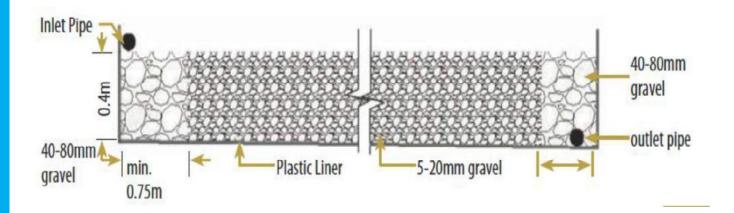
HF CONSTRUCTED WETLAND

Problem Statement

Calculate the sizing of a constructed wetland for a population of 400 with specific wastewater flow of 80 litres per person per day.

- BOD5 Contribution 40 g BOD5/pe.day
- BOD5 concentration = 40 x 1000/80 = 500 mg/l
- 30% BOD5 is removed by the primary treatment unit, then the influent BOD5 concentration to the wetland (Ci) = 350 mg/l
- Effluent BOD5 concentration (Ce) = 30 mg/I
- KBOD = 0.15 m/d for HF wetland

BED CROSS-SECTION AREA


 $A_c = Q_s / K_f (dH/ds)$

- A_c = Cross sectional area of the bed (m²)
- Q_s = average flow (m³/s)
- K_f = hydraulic conductivity of the fully developed bed (m/s)
- dH/ds = slope of bottom of the bed (m/m)

For graded gravels a value of K_f of 1 x 10⁻³ to 3 x 10⁻³ m/s is normally chosen. In most cases, dH/ds of 1% is used.

SCBP: Sustainable Sanitation & Water Management

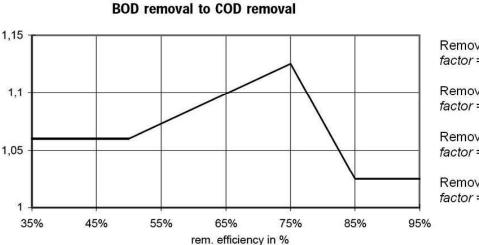
MEDIA SELECTION

Substrate arrangement in a HF wetland

Source: CW Manual, 2008

GIVEN PARAMETER

- Daily wastewater flow (m3/d) As per calculation
- BODin and CODin (mg/L) Based on BODout and CODout of ABR or AF
- Minimum annual temperature As per data collection
- Hydraulic conductivity of filter material – usually 4.3*10-3 m/sec for fine gravel


SCBP: Sustainable Sanitation & Water Management

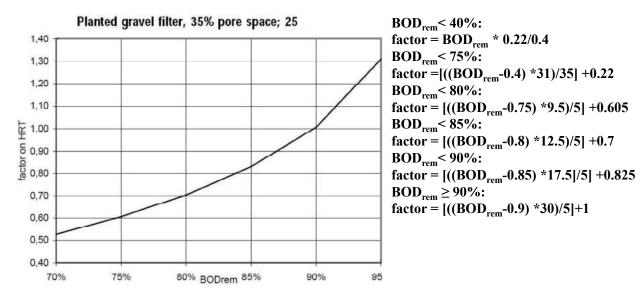
DESIGN PARAMETER (ASSUMPTIONS)

Hydraulic load limit	100 l/m ²		
Organic load limit	10 g BOD/ m ²		
Voids of Gravel	35% – 45%		
Size of Gravel	5-7mm, 10-12mm, 50-70mm, diameter of gravel		
Slope	1%		
Height of Filter	50 - 60cm		
Construction	Swivel at inlet and outlet cross section to adjest water level		

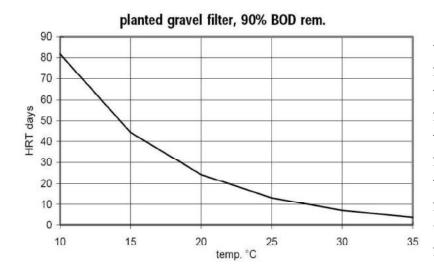
FACTOR EFFICIENCY RATIO OF BOD REMOVAL TO COD REMOVAL

simplified curve of ratio of efficiency of

Removal < 0.5: *factor* = *1.06*


Removal < 0.75: factor = (BOD_{rem}-0.5)*0.065/0.25+1.06

Removal < 0.85: factor = 1.125-(BOD_{rem}-0.75)*0.1/0.1


Remo∨al ≥ 0.85: *factor* = *1.025*

SCBP: Sustainable Sanitation & Water Management

FACTOR HRT – TEMPERATURE

temp < 15°C: factor = 82-[(temp-10) *37]/5 temp < 20°C: factor = 45-[(temp-15) *31]/5 temp < 25°C: factor = 24-[(temp-20) *11]/5 temp < 30°C: factor = 13-[(temp-25) *6]/5 temp ≥ 30°C: factor = 7

SCBP: Sustainable Sanitation & Water Management

Estimating peak flows, higher organic loads, sludge accumulation rate, hydraulic retention time, temperature, selection of filter media

SCBP: Sustainable Sanitation & Water Management

DESIGN FLAWS

Underestimation of peak flow

- Treatment efficiency at peak hours will decrease.
- Wash our sludge.

Higher organic loading

- Affects the quality of the final effluent.
- Increases the sludge production rate.

DESIGN FLAWS

Underestimation of sludge accumulation rate

- Reduced HRT.
- Affects the efficiency of the system.

Wrong assumption of HRT

- Lower HRT reduces the efficiency of the system.
- Higher HRT increases the size of the system and thereby the cost.

SCBP: Sustainable Sanitation & Water Management

DESIGN FLAWS

Temperature

- Lower temperature reduces the efficiency.
- Especially wetlands should be designed for keeping in mind the winter temperatures.

Filter media

- Lower hydraulic conductivity increases risks of clogging.
- Higher hydraulic conductivity decreases efficiency.

ecosan

SERVICES

FOUNDATION

Thank you...

+91 20640 00736 | +91 20245 30061

ecosan@ecosanservices.org

www.ecosanservices.org

SCBP: Sustainable Sanitation & Water Management

63

SANITATION CAPACITY BUILDING PLATFORM

Treatment of Faecal Sludge and Septage

Mr. Dhawal Patil

General Manager (Operations), ESF M.Sc. Hydro Science and Engineering, TU Dresden

CONTENTS

- FS Treatment Objectives
- FS treatment Stages

FS treatment Components

- Co-treatment in STP
- Deep row entrenchment
- Anaerobic Digestion
- Unplanted drying beds
- Planted drying beds

- Geotubes
- Mechanical dewatering
- Co composting
- Sludge incineration
- Thermal drying and pelletising
- Disposal of End products

TREATMENT OBJECTIVES

Dewatering

- More than 90% water content
- Transporting and treatment

Pathogens

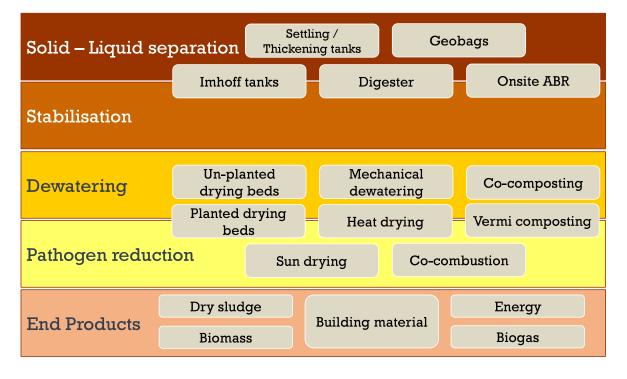
Disposal of treatment products

Nutrients

- End use of treatment products
- Stabilisation
 - Controlling oxygen demand

cewas South Asia: FSM Collection and Transport

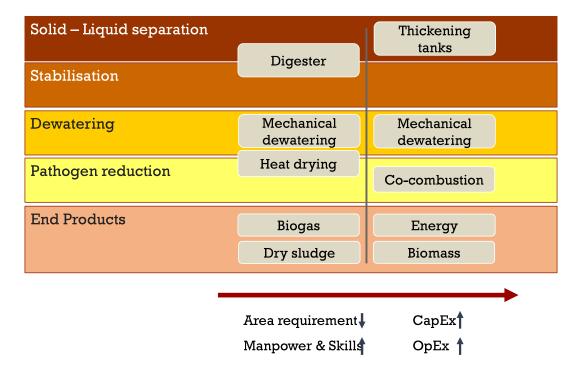
Wednesday, 20 February 2019


FS TREATMENT STAGES

FS Treatment Chain, Feasibility Options

SCBP:Faecal Sludge Treatment I

Wednesday, 20 February 2019


FSS TREATMENT CHAIN

FEASIBLE OPTIONS: < 50,000 POPULATION

Solid – Liquid separation				
	Settling / Thickening tanks	Geobags	Thickening tanks	
Dewatering			Un-planted	
Planted drying beds			drying beds	
Pathogen reducti	on			
T allogen reduction		Sun drying	Sun drying	
End Products				
	Dry sludge	Dry sludge	Dry sludge	
Area requirement↓ CapEx↑				
Manpower & Skills OpEx				

FEASIBLE OPTIONS: > 50,000 POPULATION

SCBP:Faecal Sludge Treatment I

Wednesday, 20 February 2019

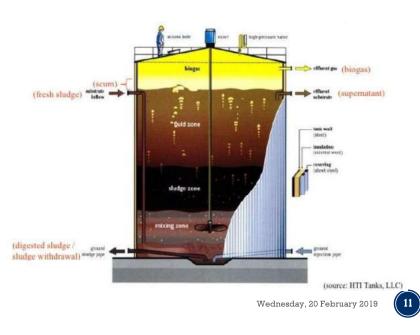
CO TREATMENT IN STP

- Limiting factor: Organic & hydraulic loading
- Application
 - At the Manhole Chamber before the inlet of STP
 - At the inlet of Screens of the STP
 - At the Sludge Management Process of the STP

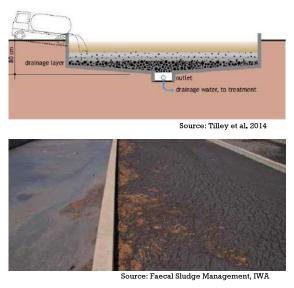
DEEP ROW ENTRENCHMENT

- Deep trenches, filled with sludge and covered with soil.
- Advantages: Simple, low cost, limited O&M, no visible or olfactory nuisance.
- Limiting factor: Land and groundwater table, legislation.

SCBP:Faecal Sludge Treatment II


Source: Faecal Sludge Management, IWA

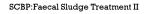
10

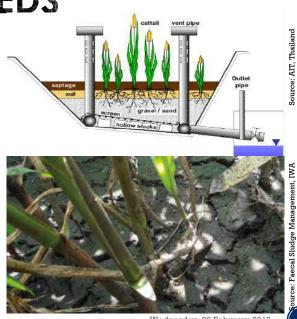

ANAEROBIC DIGESTION

- Organic matter- Biogas (methane and CO₂) and digestate.
- Advantages: Production of biogas, reduction of sludge volume and odours.
- Limiting factor: High level of skilled operation and monitoring.

SCBP:Faecal Sludge Treatment II

UNPLANTED DRYING BEDS




- Shallow filters with sand and gravels with under drain to collect filtrate.
- Application: Climatic factor and types of sludge
- Advantages: Low cost and ease of operation.
- Limitation: Large footprint and odour potential

SCBP:Faecal Sludge Treatment II

PLANTED DRYING BEDS

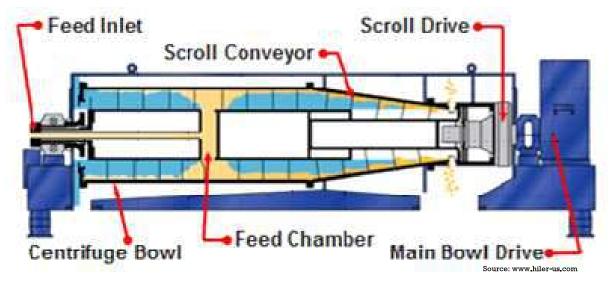
- Unplanted drying bed with emergent macrophyte.
- Application: Climatic factor
- Advantages: Low cost and ease of operation.
- Limitation: Large footprint and odour potential

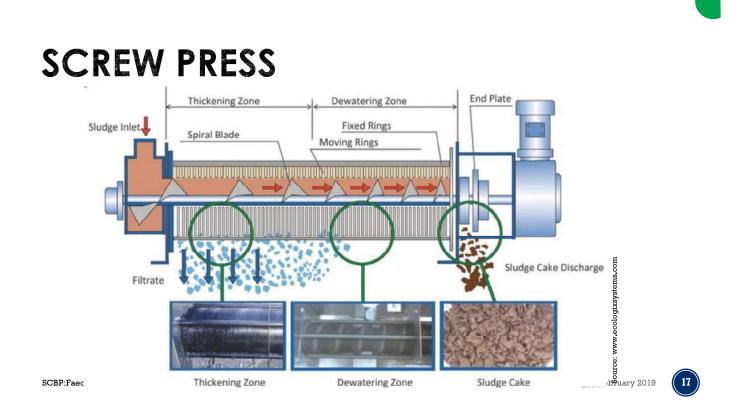
Wednesday, 20 February 2019

GEOTUBES

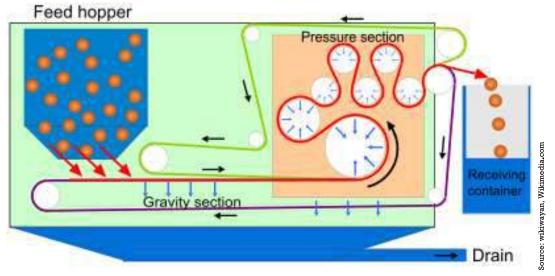
- Non woven geotextile is used to create long tubes.
- Application: fully digested sludge, increasing efficiency of SDB.
- Advantages: Low cost and ease of operation.
- Limitation: One time use

SCBP:Faecal Sludge Treatment II

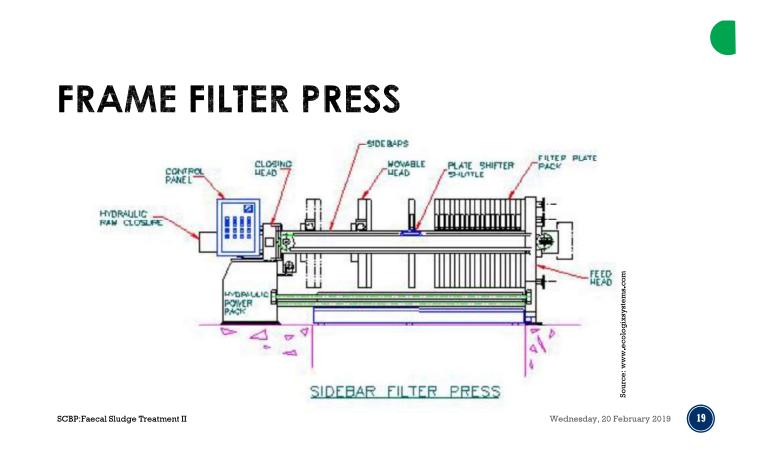

MECHANICAL SLUDGE TREATMENT


- Belt filter, Centrifuge, Frame filter press and the Screw press.
- Mostly used for sludge generated in STP, transferable to FS and septage.
- Malaysia: centrifugation to dewater FS after screening and addition of flocculants.
- Advantages: Compactness, speed of the process.
- Limiting factors: investment costs, O&M costs, dependency on electricity.

SCBP:Faecal Sludge Treatment II


Wednesday, 20 February 2019

CENTRIFUGE

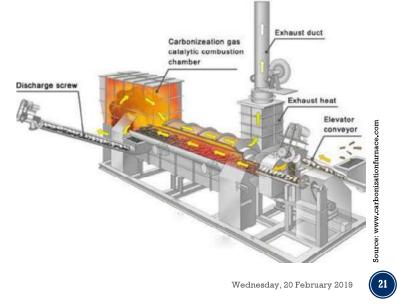


BELT FILTER

18

CO COMPOSTING

- C:N Ratio = 20-30:1, Oxygen concentration: 40-60%, Particle diameter < 5 cm
- Advantages: Thermophilic condition- Pathogen inactivation
- Limiting factors: Technical and managerial skills


Valorization Pre-treatment Post-treatment Reuse Co-composting Blending and Pelletization Source: www.wateratleeds.com

SCBP:Faecal Sludge Treatment II

Wednesday, 20 February 2019

SLUDGE INCINERATION


- Burning of sludge at temperature 850-900°C.
- Advantages: Volume and pathogen reduction.
- Limiting factors: emission of pollutants, high skilled operator and maintenance staff, high capital and O& cost.

SCBP:Faecal Sludge Treatment II

THERMAL DRYING AND PELLETISING

- Direct (hot air or gas) or indirect thermal driers (hot water or oil).
- Advantages: Reduction in volume and pathogen content.
- Limiting factors: high energy requirements, risk of fire and explosion, high maintenance.

SCBP:Faecal Sludge Treatment I

Product produced	Treatment / Processing technology		
Soil conditioner	Sludge from drying beds, Compost, Pelleting process, Digestate from anaerobic digestion, Residual from Black Soldier Fly		
Reclaimed water	Treated liquid FS, Treatment plant effluent		
Protein	Black Soldier Fly process		
Fodder and plants	Planted drying beds		
Fish and plants	Stabilisation ponds or effluent for aquaculture		
Building materials	Incorporation of dried sludge		
Bio fuels	Biogas from anaerobic digestion, Incineration / co combustion of dried sludge, Pyrolysis of FS, Bio diesel from FS		

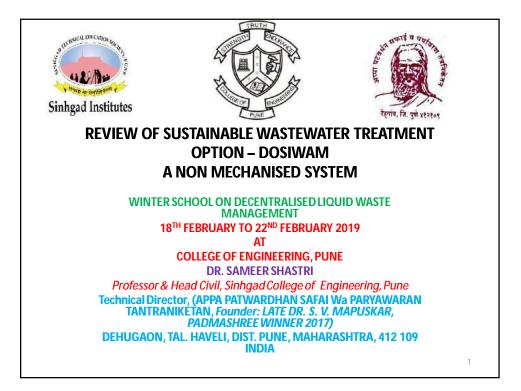
cewas South Asia: FSM Collection and Transport

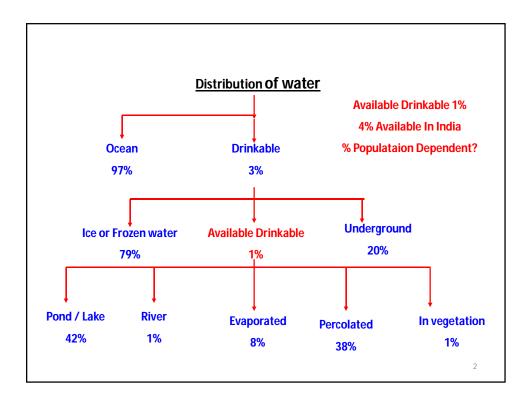
Wednesday, 20 February 2019

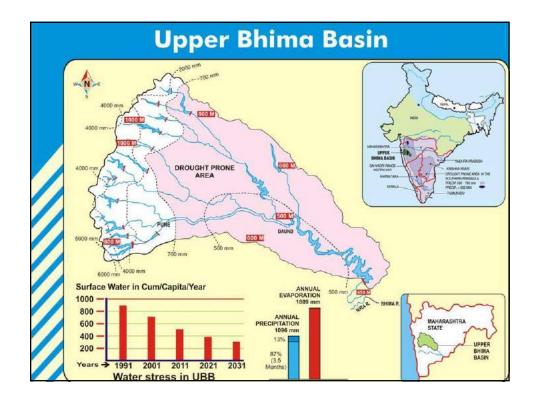
Thank you...

+91 20640 00736 | +91 20245 30061

ecosan@ecosanservices.org

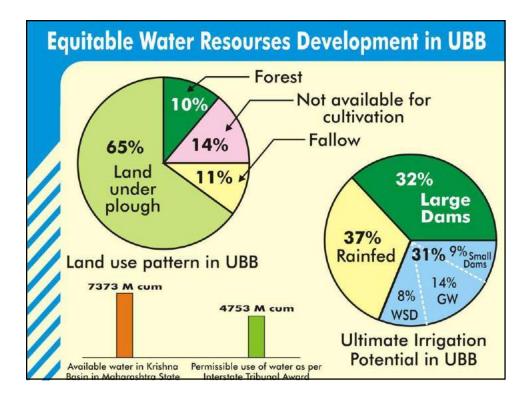

www.ecosanservices.org



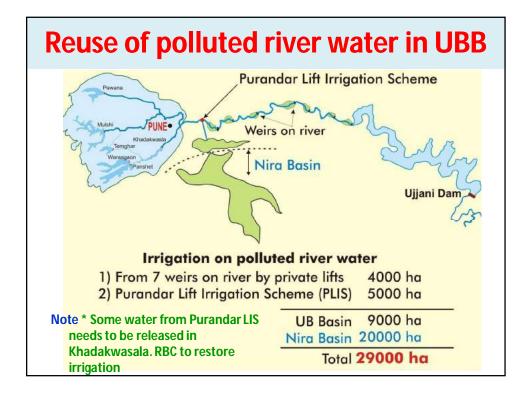

SCBP: Sustainable Sanitation & Water Management

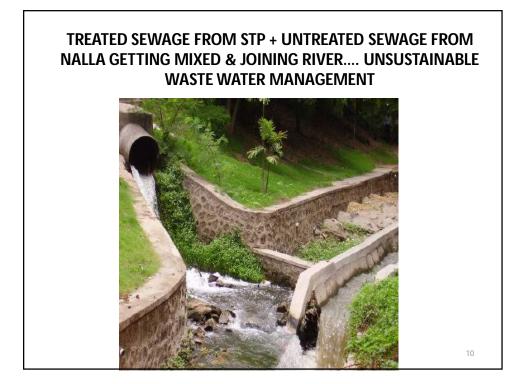
Wednesday, 20 February 2019

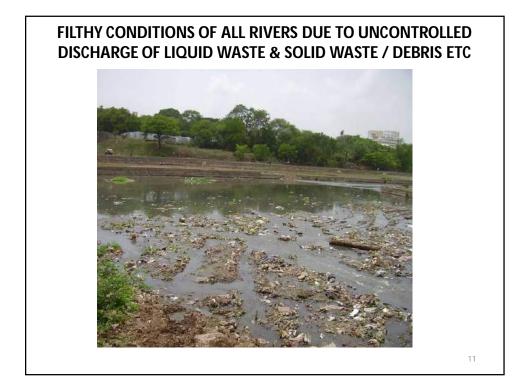
(25)

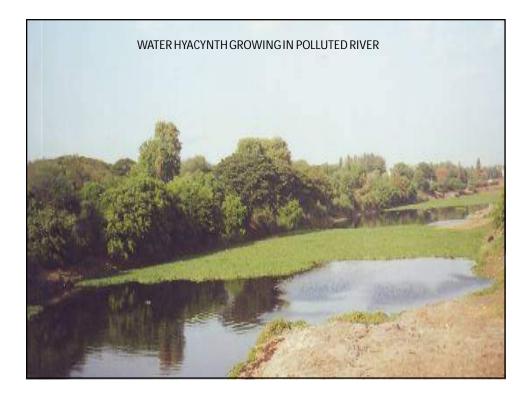


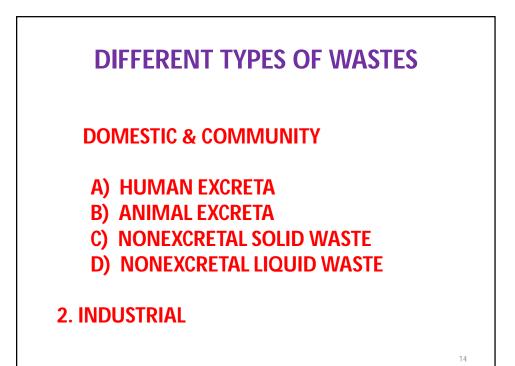

Available and permissible water use in UBB			
Water account in UBB	Qty. Mcum		
Average Water available	7373		
Permissible use as per IBWDT Award	4753		
Av. westward diversion for hydropower by TATA	1200		
Live storage of all u/s maj./med./minor dams	2669		
Live storage of Ujjani dam	1518		

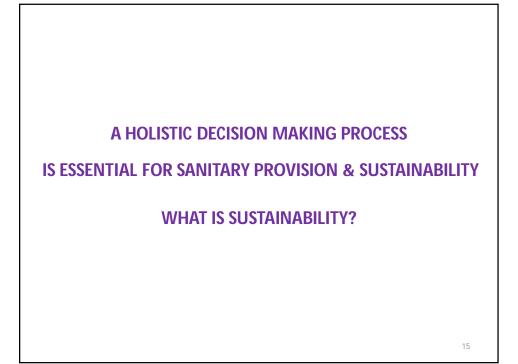

Water Resource Development status in UBB


• Khadakwasla dam -	Drought area irrigation & urban water supply	1870
• 5 dams of TATA	Hydropower by westwar diversion	d 1925
• 17 Large dams -	Drought area irrigation, Incidental Hydropower, Urban water Supply	1955 to 2012
• 245 small dams -	Seasonal irrigation	1970 to 2012
Ground Water -	Perennial Irrigation Village water supply	1975 to 2012
Watershed Dev	Augmenting GW in rain-fed area	1990 to 2012

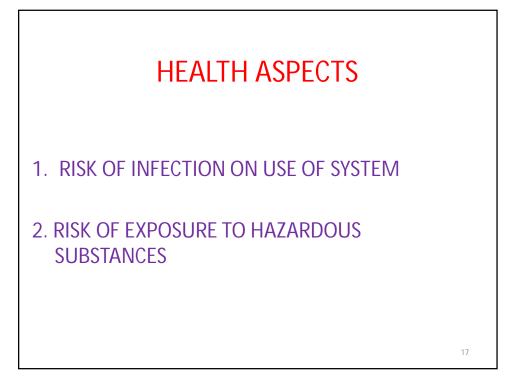



Urban-Rural Conflict in UBB				
Period Year	Cumulative Water Stored Mcum	Dams Completed	Urban Use Mcum	Balance For Irrigation Mcum
1871-67	56	Khadakwasla	26	30
1968	294 / 350	Panshet	30	320
1971	241 / 591	Pawana	58	533
1981	591	-	104	487
1991	362 / 953	Warasgaon	292	661
2001	953	-	448	505
2011	64 /1017	Temghar	620	397
2021	1017	-	949	68
2031	1017	-	?	?

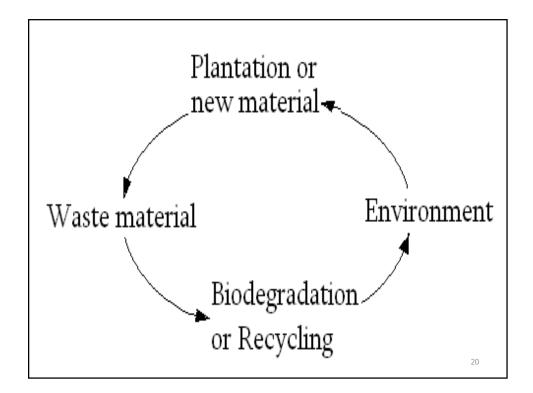


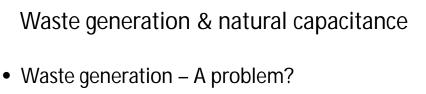


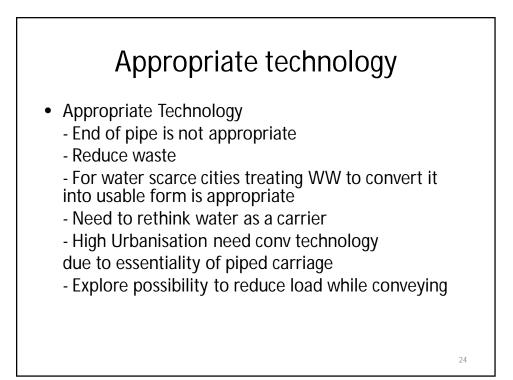
DECENTRALISED 'ON SITE' INTEGRATED WASTE MANAGEMENT SYSTEM


DOSIWAM

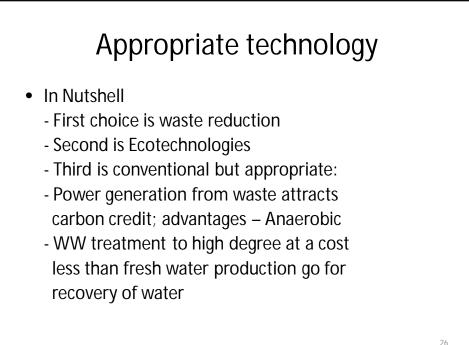
CONCEPT AND TECHNOLOGY DEVELOPED BY PADMASHREE Dr. S. V. MAPUSKAR

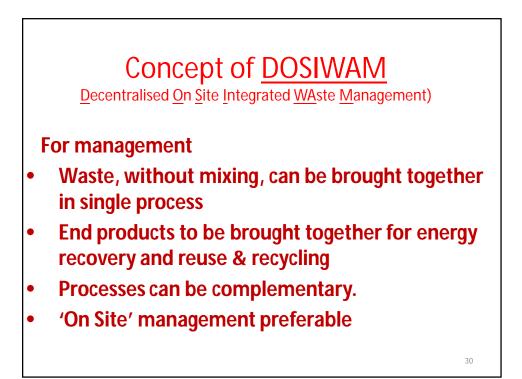




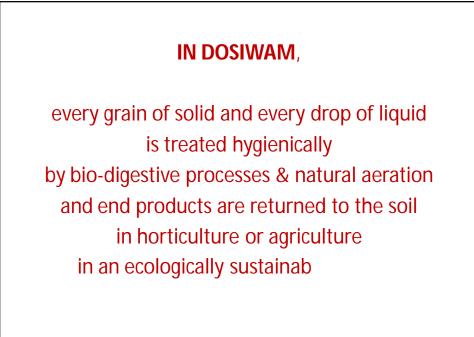


- No When within natural capacitance
- Yes Beyond natural capacitance
- Exceeding the natural capacitance
 High level of developmental activities
 - Industry, Urbanisation, Infrastructure


21

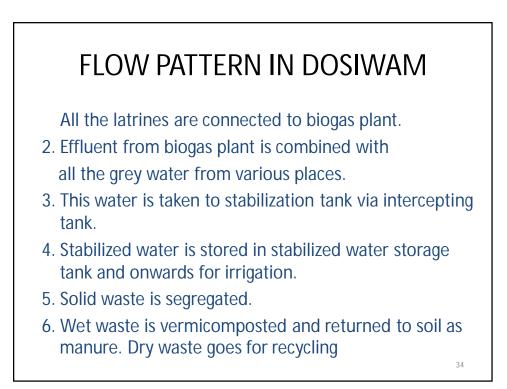

All biodegradation methods for various waste materials are based on aerobic or anaerobic biodigestive processes.

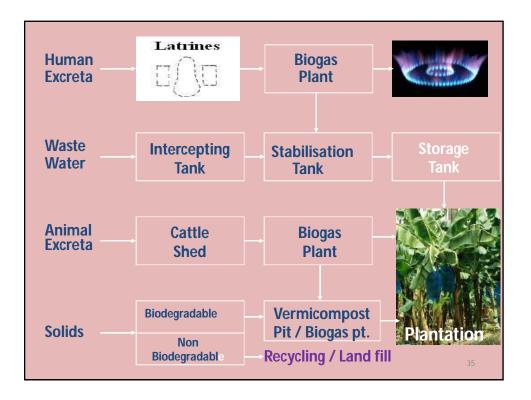
These can be used in a complementary way.

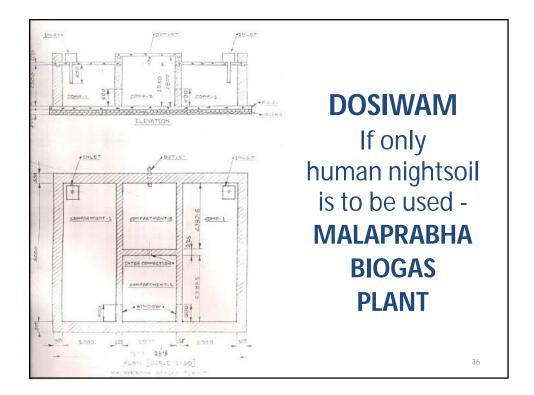

If end products are returned to nature in ecofriendly manner, nature reciprocates.

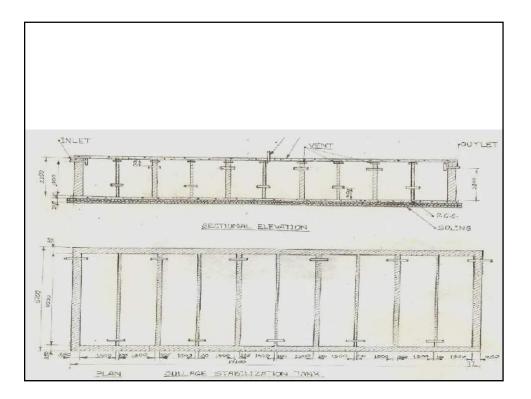
SEWAGE – GENERATION & MANAGEMENT

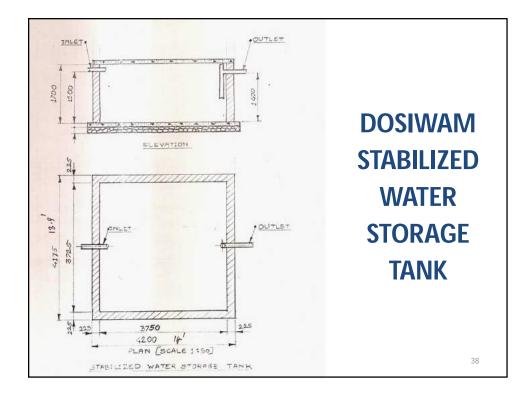
- In conventional system excreta and grey water combined and transported for offsite treatment, thus diluting 10% excretal waste to 100% sewage, increasing treatment needs, which are costly & inadequate
- 2. Untreated component results in pollution & disease transmission.
- 3. Treating excreta and grey water separately preferably on site reduces costs and simplifies the process.

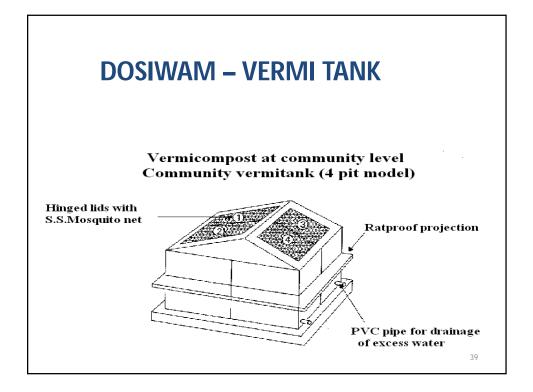


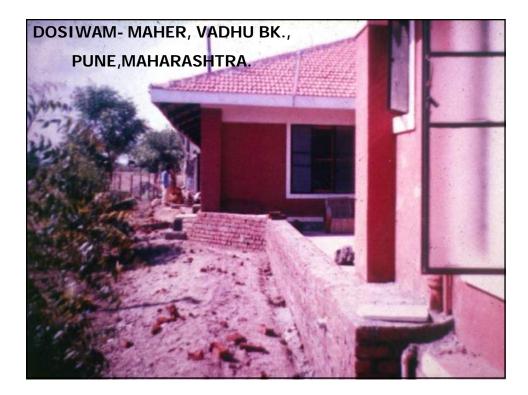


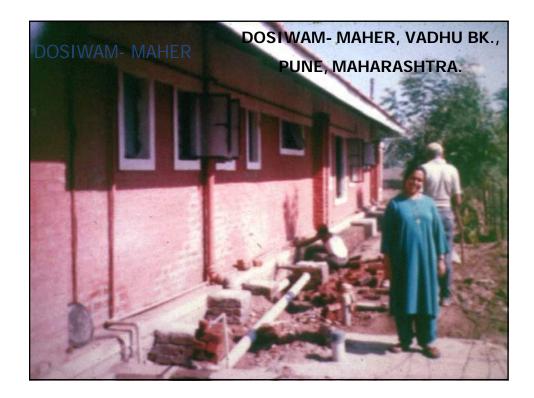


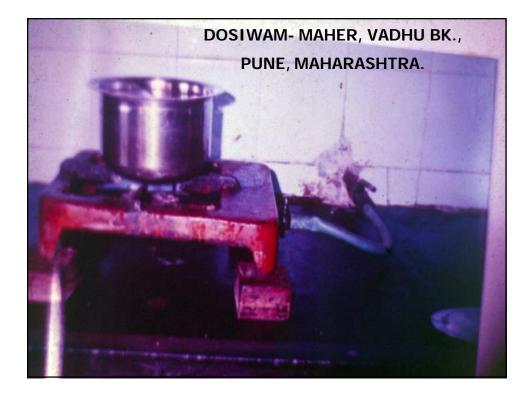


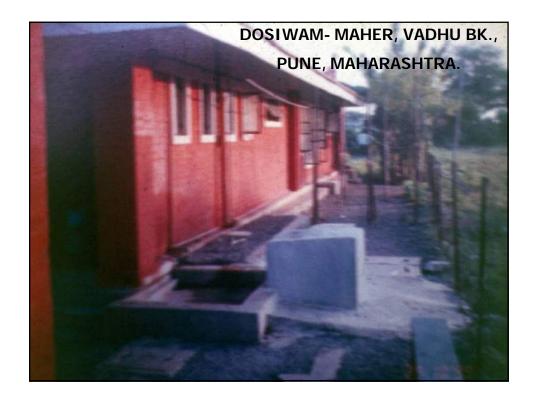

- 1. Biogas use -as energy source
- 2. Fertilizer use -agriculture / horticulture
- 3. Stabilized use agriculture / horticulture Clean water

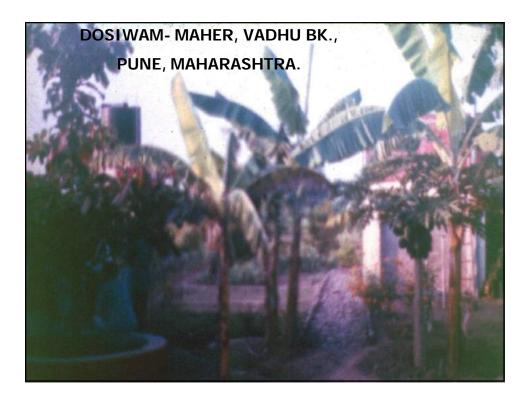


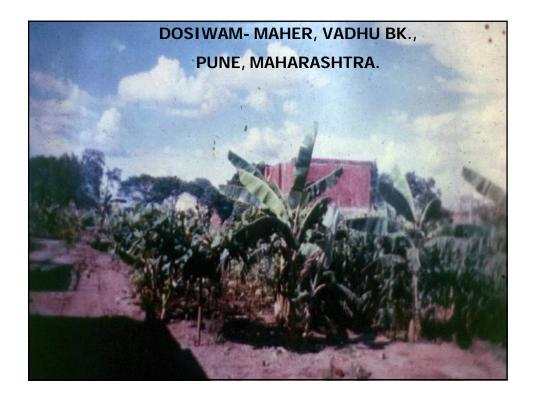




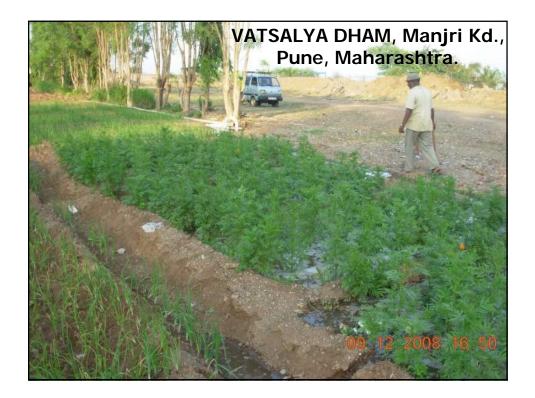






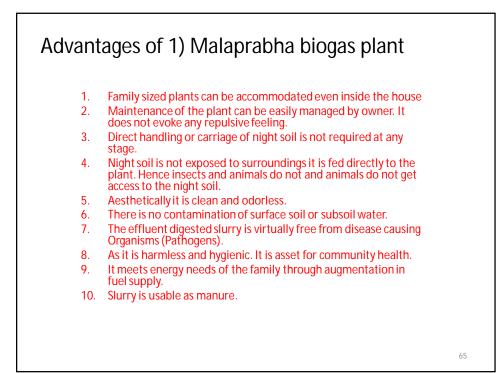


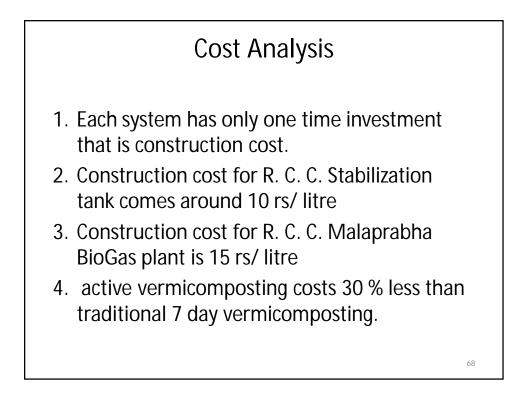




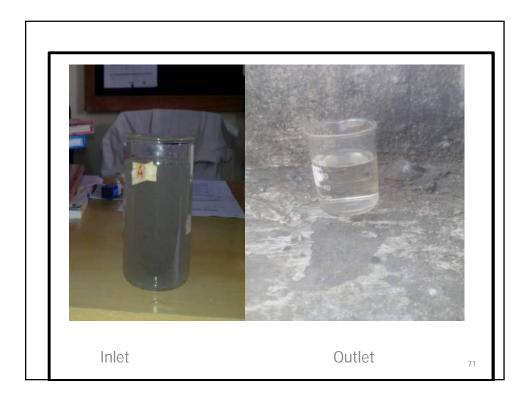
DOSIWAM

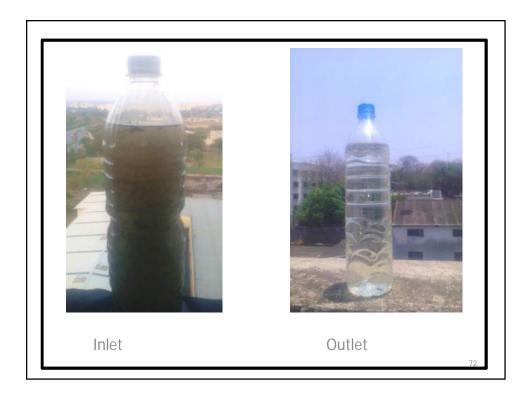
is a sustainable, ecofriendly, hygienically safe sanitation process based on natural bio-digestion which converts waste to wealth

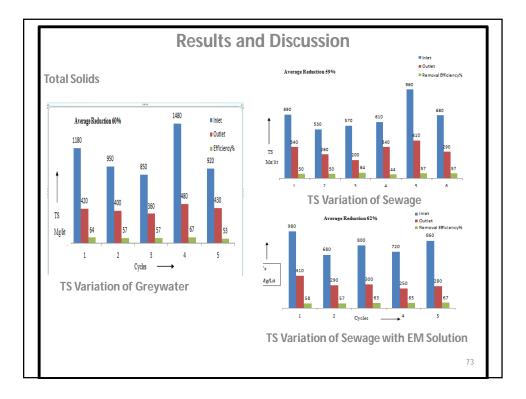


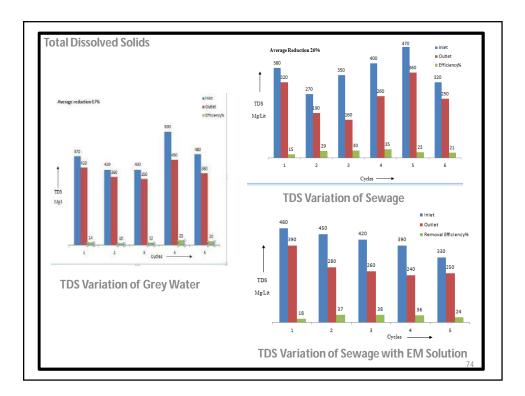


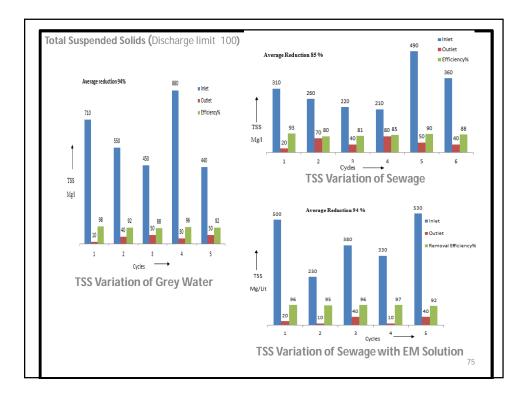
Advantages of 2) Stabilization Tank

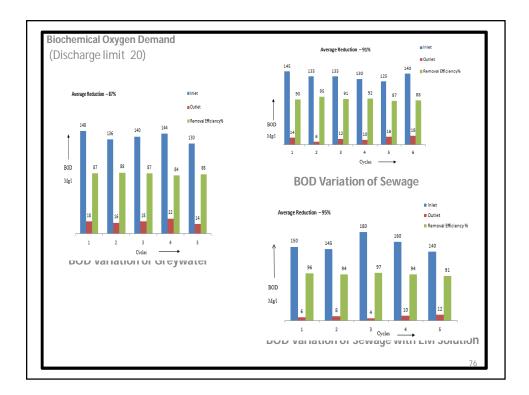

- 1. Zero mechanical instruments required
- 2. Can fit below ground
- 3. C.O.D. and B.O.D. removal efficiency is about 80 % to 88%
- 4. No noise / air / soil pollution during operation
- 5. One time cost only for construction
- 6. No electricity required
- 7. No chemicals required
- 8. No technical operator required
- 9. Treated water can be used for flushing, gardening, floor washing (no smell)

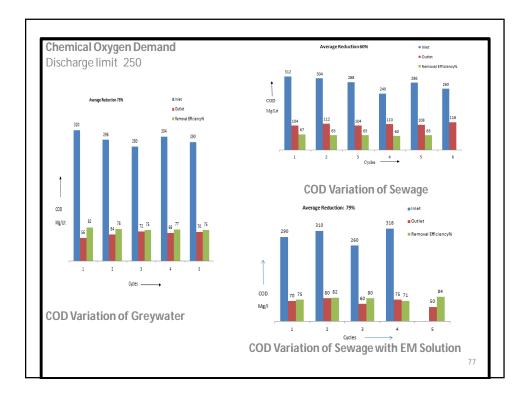

			Ana	ılysis Ca	rried Ou	t In The	College I	Lab			sis Carrie ied Lab	d Out From		
Sr. No.	Parameters	28 th A]	pril 2014	07 th M	lay 2014	15 th M	ay 2014	31 th M	lay 2014	Sar	nple1	Sampl	e2	
		Inlet	Outlet	Inlet	Outlet	Inlet	Outlet	Inlet	Outlet	Inlet	Outlet	Inlet	Outlet	
1	рН	8	6.9	6.9	7.8	6.95	7.15	6.89	7.1	6.95	7.15	7.03	7.31	
2	Turbidity	13.7	1.1	70	0.3	17.5	0.7	21.1	3.2	15.5	3	18	2.9	
3	T.S (mg/l)	270	160	1220	140	230	150	480	300	382	56	301	48	
4	T.D.S(mg/l)	210	150	250	130	170	130	460	170	308	56	265	48	
5	T.S.S (mg/l)	60	10	970	10	60	20	20	130	74	Nil	36	Nil	
6	BOD (mg/l)	76	20	144	22	114	4	120	12	120	18	92	12	
7	COD (mg/l)	180	25	210	30	200	80	250	40	206	60	174	53	
8	MPN(/100ml)	>17	10	25	12	36	9	38	16	32	8	26	10	
9	Phosphates									9.6	4.2	7.2	3.5	
	(mg/l)	-	-	-	-	-	-	-	-					

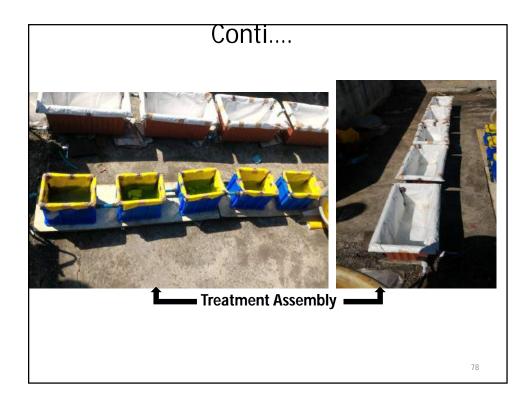


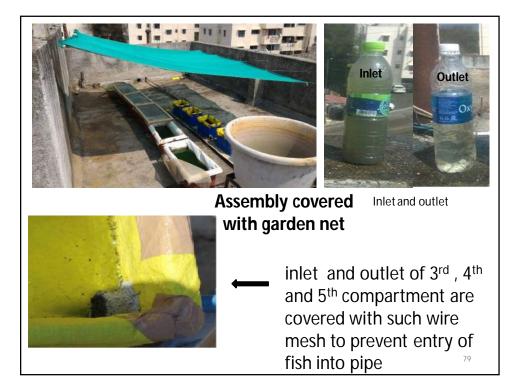


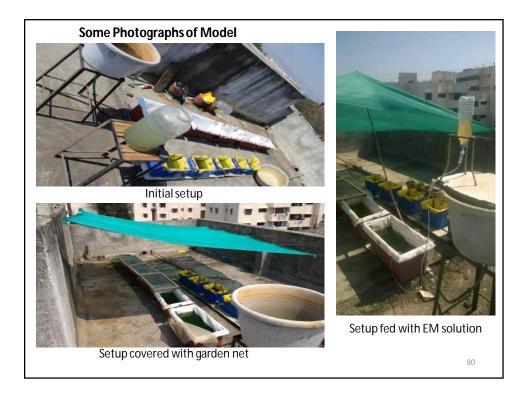


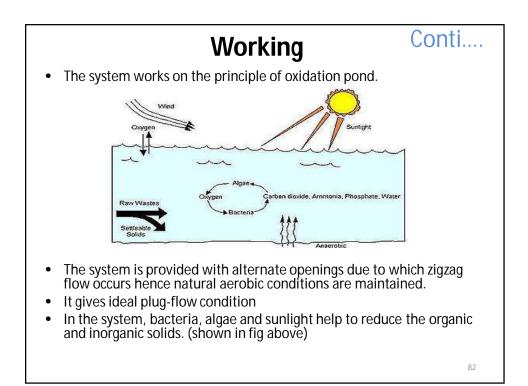


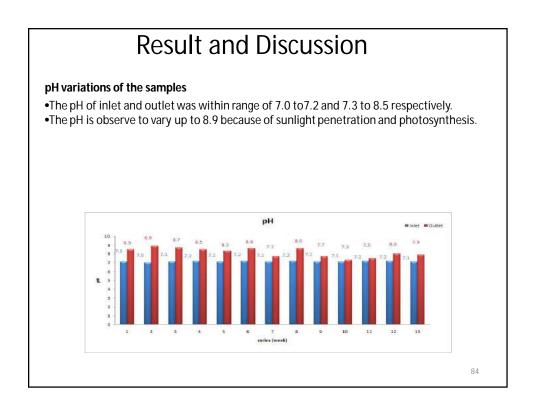


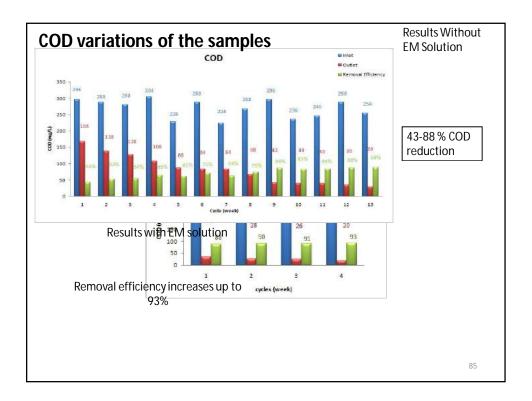


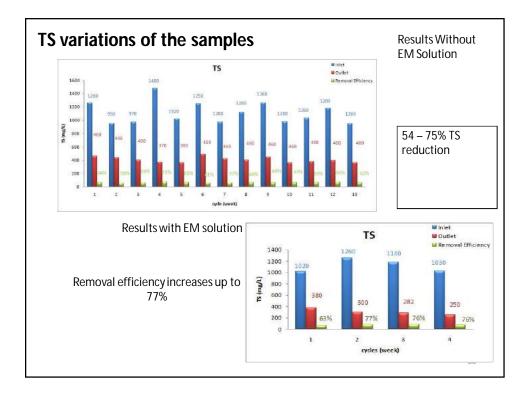


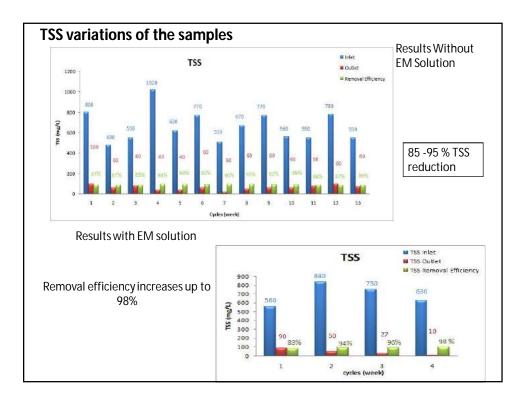












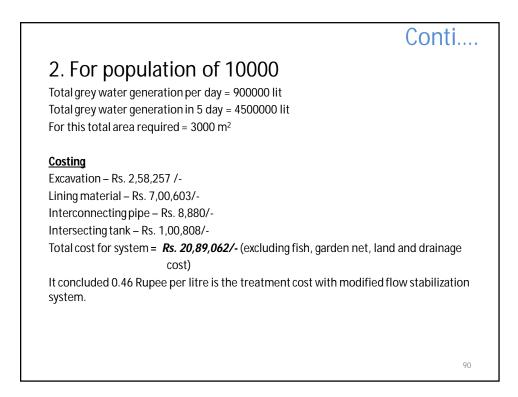
Parameter	Method
pH	Electrometric Method
Total Suspended Solids	Gravimetric Method
Chemical Oxygen Demand	Reflux Method
Bio-Chemical Oxygen Demand	Dilution Method
Nitrogen	Total kjeldahls nitrogen Method
Phosphorus	Spectrophotometer Method
Potassium	Flame photometer
MPN	MPN test
E-coli	PA test

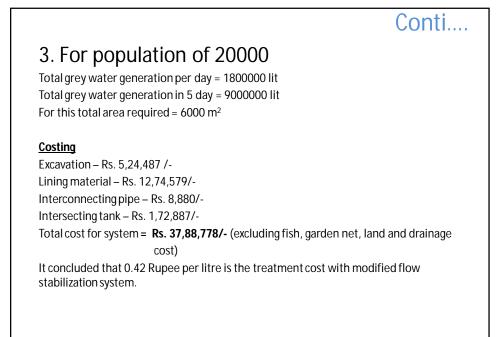
Cycles (week) 1		2 3					7	8	9	10	11	12	13	
nlet (mg/l)							Nil							
Dutlet (mg/l)	8.1	8.0	8.3	8.5	7.9	7.8	7.8	7.9	7.9	8.1	8.3	8.1	7.9	
Summery of Parameter	Resi		lts Inlet			(Dutle	t		P	Permissible limit			
					Without EM solution			With EM solution			Surface water			
рН		7-7.2			7.3-8.5			-			6.5-9.0			
COD (mg/L)		220-304			30-168			20-36			250			
BOD (mg/L)		128-204			16-60			12-22			30			
TS (mg/L)		950-1480			360-490			250-380			-			
TSS (mg/L)		480-1020			40-100			10-90			100			
TDS (mg/L)		400-490			280		240-290			2100				

Cost economics

1. For population of 5000

Total grey water generation per day = 450000 lit Total grey water generation in 5 day = 2250000 lit For this total area required = 1500 m² Costing


Excavation – Rs. 1,26,215 /-Lining material – Rs. 3,97,848/-


Interconnecting pipe – Rs. 8,880/-

Intersecting tank - Rs. 62,225/-

Total cost for system = **Rs. 11,28,111/-** (excluding fish, garden net, land and drainage cost)

It concluded 0.5 Rupee per litre is the treatment cost with modified flow stabilization system.

